
How Much Does it Cost?

Roberto Ierusalimschy

2

Some Recent Proposals

● Alternative way of
format/pack/unpack

● UTF-8–aware scanner

● new ':.' syntax

● new pattern '%B'

● '__tostring' can
use '__name'

● adding [] as table
creation syntax

● new array type

● 'table' as fallback for
tables

● '__key' metamethod

● light syntax for
anonymous functions

3

‚,‚= print

function function (functiοn) 
 if functiοn == 0 then return 1
 else return functiοn * function (functiοn - 1) 
 end
end

‚(function (10)) --> 3628800 

UTF-8–aware scanner

4

What is the cost of a new feature in
a programming language?

Coroutines

Iterators

Unicode-aware scanner

RAII
support

IntegersVarargs

Goto

Safe navigation
Try-catch

Integers

5

static StkId adjust_varargs (lua_State *L, Proto *p, int actual) {
 int i;
 int nfixargs = p->numparams;
 StkId base, fixed;
 lua_assert(actual >= nfixargs);
 /* move fixed parameters to final position */
 luaD_checkstack(L, p->maxstacksize); /* check again for new 'base' */
 fixed = L->top - actual; /* first fixed argument */
 base = L->top; /* final position of first argument */
 for (i=0; i<nfixargs; i++) {
 setobjs2s(L, L->top++, fixed + i);
 setnilvalue(fixed + i);
 }
 return base;
}

Lines of Code

● Implementation effort
● “Why not? It's so easy!!”
● Quite relevant

6

Performance

● Does the feature help code that uses it?
● Does it impair code that does not use the feature?
● Does it create large performance variations for

special cases?

7

Documentation

● Is it hard to explain?
● Is it hard to understand?
● Is it hard to guess?

8

Conceptual Integrity

● Does it fit well with other
features?

● Does it follow general principles?

9

Generality

● Does it solve all problems in a
class?

● Does it solve related problems?
● Does it solve unrelated

problems?

10

Testing

● Is it hard to test?
● Is it hard to debug?
● Bugs can be severe?

11

Obstacle to Evolution

● Does it narrow the design space?
● Does it restrict alternative implementations?

12

Some Case Studies

13

Equality

● Lua 1 used '=' for comparisons.
– syntax allowed the distinction between comparisons

and assignments.

– Lua 1 used @{a = b} for records and @[a = b]
for sequences.

– Lua 2 unified all constructors with {}.

– Result was ambiguity in {a = b}.

14

Comments

● Comments with '--' preclude a C-style
decrement operator.
– which mostly precludes a C-style increment

operator.

– which precludes a new language: Lua++

● Comments with '[[...]]' have problems
with t[x[i]]

– that was before '[===['.

15

Multiple Returns

● Powerful
– generic-call mechanism: f(table.unpack(t))

● Conceptual integrity
– a second class data-structure mechanism hidden

inside the language.

– nil's become more significant.

16

Multiple Returns

● Restrictions on implementations
– stack frame has variable size.

– C functions must return an integer.

– translations to other languages cannot use native
return mechanism.

● Small cost even when not used
– every return must check (and adjust) number of

results.

17

Varargs (“new style”)

● Conceptual integrity
– a second class data-structure mechanism hidden

inside the language.

– demonizes table creation.

● Small cost even when not used
– the framework for supporting varargs is used in all

Lua functions.

18

Incremental Garbage Collector

● Negligible costs in documentation
● High costs in testing

– very hard to debug, aggravated by the C API.

– bugs are severe.

– very hard to test, due to uncontrolled interactions
between the mutator and the collector.

19

Finalizers and Weak Tables

● Key ingredient in the Lua-C API and in several
Lua idioms

● Big impact on alternative implementations
– hard to use a native collector

● Some cost for the garbage collector
– mainly when using the features

20

Length Operator (#t)

● Documentation
– easy to explain

– difficult to understand

● Conceptual integrity
– fights with varargs and multiple returns: {...},
{f(x)}

21

String methods

● s:len(), s:toupper()

● Trivial implementation
● Trivial testing
● Conceptual integrity

– only way in Lua to call library functions out of raw
syntax

– particularly bad for sandboxing

22

Coroutines

● Small cost even when not used
– no way to know it won't be used!

● Implementation
– spread over the interpreter

– nasty interaction between coroutines, garbage
collection, and closures

– hard for JITs

● Hard to test
– all situations where yields can occur

23

Integers

● Many lines of code
● Small price when not using it

– one extra check before float arithmetic

● Some gains when using it
– integer operations faster in several architectures

– avoid conversions float ⟺ int

24

Integers

● Conceptual integrity
– Several “integer types” already present in the

language: arguments to library functions, concept of
sequence, bitwise library, C API, etc.

– Ill-defined limits

– Ill-defined conversions

25

Final Remarks

● Many applications can rip big benefits from small
and simple additions to a language. But each
application needs different small and simple
additions.

● It is hard to foresee all consequences of a new
feature.

● To avoid bloating the language, features should
be measured not by themselves, but against
competing features.

26

Final Remarks

● We can err both by adding a bad feature or by
blocking a good feature.

27

Final Remarks

● We can err both by adding a bad feature or by
blocking a good one.

● One of these errors is much easier to fix than
the other.

28

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28

