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Some Recent Proposals

● Alternative way of 
format/pack/unpack

● UTF-8–aware scanner

● new ':.' syntax

● new pattern '%B'

●  '__tostring' can 
use '__name'

● adding [] as table 
creation syntax

● new array type

● 'table' as fallback for 
tables

● '__key' metamethod

● light syntax for 
anonymous functions
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‚,‚= print

function function  (functiοn) 
  if functiοn == 0 then return 1
  else return functiοn * function (functiοn - 1) 
  end
end

‚(function (10))       --> 3628800 

UTF-8–aware scanner
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What is the cost of a new feature in 
a programming language?

Coroutines

Iterators

Unicode-aware scanner

RAII 
support

IntegersVarargs

Goto

Safe navigation
Try-catch

Integers
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static StkId adjust_varargs (lua_State *L, Proto *p, int actual) {
  int i;
  int nfixargs = p->numparams;
  StkId base, fixed;
  lua_assert(actual >= nfixargs);
  /* move fixed parameters to final position */
  luaD_checkstack(L, p->maxstacksize);  /* check again for new 'base' */
  fixed = L->top - actual;  /* first fixed argument */
  base = L->top;  /* final position of first argument */
  for (i=0; i<nfixargs; i++) {
    setobjs2s(L, L->top++, fixed + i);
    setnilvalue(fixed + i);
  }
  return base;
}

Lines of Code

● Implementation effort
● “Why not? It's so easy!!”
● Quite relevant
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Performance

● Does the feature help code that uses it?
● Does it impair code that does not use the feature?
● Does it create large performance variations for 

special cases?
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Documentation

● Is it hard to explain?
● Is it hard to understand?
● Is it hard to guess?
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Conceptual Integrity

● Does it fit well with other 
features?

● Does it follow general principles?
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Generality

● Does it solve all problems in a 
class?

● Does it solve related problems?
● Does it solve unrelated 

problems?
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Testing

● Is it hard to test?
● Is it hard to debug?
● Bugs can be severe?
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Obstacle to Evolution

● Does it narrow the design space?
● Does it restrict alternative implementations? 
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Some Case Studies
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Equality

● Lua 1 used '=' for comparisons.
– syntax allowed the distinction between comparisons 

and assignments.

– Lua 1 used @{a = b} for records and @[a = b] 
for sequences.

– Lua 2 unified all constructors with {}.

– Result was ambiguity in {a = b}.
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Comments

● Comments with '--' preclude a C-style 
decrement operator.
– which mostly precludes a C-style increment 

operator.

– which precludes a new language: Lua++

● Comments with '[[...]]' have problems 
with t[x[i]]

– that was before '[===['.
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Multiple Returns

● Powerful
– generic-call mechanism: f(table.unpack(t))

● Conceptual integrity
– a second class data-structure mechanism hidden 

inside the language.

– nil's become more significant. 
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Multiple Returns

● Restrictions on implementations
– stack frame has variable size.

– C functions must return an integer.

– translations to other languages cannot use native 
return mechanism.

● Small cost even when not used
– every return must check (and adjust) number of 

results.
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Varargs (“new style”)

● Conceptual integrity
– a second class data-structure mechanism hidden 

inside the language.

– demonizes table creation.

● Small cost even when not used
– the framework for supporting varargs is used in all 

Lua functions.
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Incremental Garbage Collector

● Negligible costs in documentation
● High costs in testing

– very hard to debug, aggravated by the C API.

– bugs are severe.

– very hard to test, due to uncontrolled interactions 
between the mutator and the collector. 
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Finalizers and Weak Tables

● Key ingredient in the Lua-C API and in several 
Lua idioms

● Big impact on alternative implementations
– hard to use a native collector

● Some cost for the garbage collector
– mainly when using the features
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Length Operator (#t)

● Documentation
– easy to explain

– difficult to understand

● Conceptual integrity
– fights with varargs and multiple returns: {...}, 
{f(x)}
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String methods

● s:len(), s:toupper()

● Trivial implementation
● Trivial testing
● Conceptual integrity

– only way in Lua to call library functions out of raw 
syntax

– particularly bad for sandboxing
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Coroutines

● Small cost even when not used
– no way to know it won't be used!

● Implementation
– spread over the interpreter

– nasty interaction between coroutines, garbage 
collection, and closures

– hard for JITs

● Hard to test
– all situations where yields can occur
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Integers

● Many lines of code
● Small price when not using it

– one extra check before float arithmetic

● Some gains when using it
– integer operations faster in several architectures

– avoid conversions float ⟺ int
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Integers

● Conceptual integrity
– Several “integer types” already present in the 

language: arguments to library functions, concept of 
sequence, bitwise library, C API, etc. 

– Ill-defined limits

– Ill-defined conversions 
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Final Remarks

● Many applications can rip big benefits from small 
and simple additions to a language. But each 
application needs different small and simple 
additions.

● It is hard to foresee all consequences of a new 
feature.

● To avoid bloating the language, features should 
be measured not by themselves, but against 
competing features.
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Final Remarks

● We can err both by adding a bad feature or by 
blocking a good feature. 
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Final Remarks

● We can err both by adding a bad feature or by 
blocking a good one. 

● One of these errors is much easier to fix than 
the other.
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