
Ravi – a Lua 5.3 Dialect
Dibyendu Majumdar

Introduction

• Ravi is a dialect of Lua 5.3

• Features language enhancements to allow limited optional static typing of local
declarations and function parameters

• Mixes static typing and dynamic typing to maintain (as far as possible)
compatibility with Lua

• Lua and Ravi functions can be JIT compiled, automatically or upon user request

• Two JIT compiler implementations - LLVM and libgccjit

• Unit of compilation is a Lua closure

• Not 100% Lua compatible hence new name for the language

• Uses extended bytecodes specialized for types

• For selected benchmarks, Ravi matches LuaJIT performance

History

• Discovered Lua in 2014 while looking for an embedded scripting language

• Got interested in LuaJIT for performance

• However LuaJIT did not work well on all platforms, and did not play well
with use cases where it would be embedded in a Java application

• Decided to try to understand LuaJIT with a view to enhancing it

• This was just too hard

• So Ravi was born as an attempt to create an alternative to LuaJIT for
specific use case (numeric computing)

• Static typing is used to help the JIT compiler; strong type guarantees are
necessary to ensure correctness of JIT compiled code

Comparison with LuaJIT

Ravi
• LLVM and libgccjit JIT compilers

• JIT compiler is slow

• Large runtime image due to LLVM

• Not suited for small devices

• Simpler implementation; easy to
understand and support

• No FFI, but LLVM binding available

• Like Lua, safe for programmers coding in
Lua

• Safety and maintainability are top
priorities

LuaJIT
• Custom tracing JIT compiler

• JIT compiler is fast

• Small runtime image

• Suited for small devices

• Complex implementation; significantly
harder to understand and support

• FFI integrated into the system

• Unsafe due to FFI – you need to know
what you are doing

• Performance and small runtime image
size are the top priorities

Ravi extension – typed local variables

• Local variables can be annotated
with types

• Only 4 static types implemented:
• Integer (64-bit)
• Number (double)
• Integer array (table subtype)
• Number array (table subtype)

• Local variables initialized
automatically

• The static types above are most
relevant for numeric computing

Ravi extension – typed function arguments

• Function arguments can be
annotated with types

• If annotated, type checks
performed upon entry to
function (i.e. at runtime)

• The type checks ensure that JIT
compilation can proceed with
certainty regarding the types of
the function arguments

Ravi extension – return type coercion

• If the value of a function call is
assigned to a typed variable
then a type check / coercion is
performed at run time

• Static type checking alone would
not provide strong guarantee
needed by JIT compiler

Ravi extension - arrays

• Ravi arrays are subtypes of Lua
tables

• When types are known static
checking is done where possible
to ensure correct behaviour

• Table initializers are checked at
runtime rather than compile
time as each value could result
from an expression

Ravi extension - arrays

• A Ravi array crossing into Lua looks like a table but
has restrictions on types of values and indexing
operations

• Meta methods not supported on arrays

• Array type uses additional fields in the Lua Table
structure

• The array data is held in contiguous memory
compatible with native arrays

• Arrays are initialized to 0 not nil

• For performance reasons the arrays have a slot at
index 0 but this is not visible in initializers or
iterators; however direct indexing will reveal

• The extra slot at index 0 can be used to hold any 8-
byte value; for instance the Ravi Matrix library uses
this to hold two 32-bit integers

• Accessing out of bounds array elements results in
error

• Slices can be created from arrays using a library
function; a slice maintains a reference to the
original array.

• Arrays can never shrink – they can only grow; no
way to delete an array element

• Array growth is automatic when value assigned to
last+1 slot

• Arrays maintain their length so computing array
length is fast

• The normal Lua hash and array parts cannot
directly be accessed in array types; however the
slice implementation uses the hash part to hold a
reference to parent array

• Array indexing can exploit static typing to generate
more efficient code

• C API allows direct access to array data

Ravi extension - arrays

Ravi extension - arrays

Ravi extension - arrays

Ravi bytecode extensions

• Fornum loops are specialized,
especially when index is integer and
step is a positive constant (most
common use case)

• Bitwise operations are specialized
when operands are known to be of
integer types

• Numeric operations are specialized
when operands are known to be
numeric types

• Up-value access is specialized when
target is a typed scalar variable

• Array indexing is specialized when
types are known at compilation time

Ravi Bytecode extensions

MOVE MOVEI, MOVEF, MOVEAI, MOVEAF

LOADNIL LOADIZ, LOADFZ

SETUPVAL SETUPVALI, SETUPVALF, SETUPVALAI,
SETUPVALAF

GETTABLE GETTABLE_AI, GETTABLE_AF

SETTABLE SETTABLE_AI, SETTABLE_AF,
SETTABLE_AII, SETTABLE_AFF

NEWTABLE NEWARRAYI, NEWARRAYF

ADD ADDFF, ADDFI, ADDII

SUB SUBFF, SUBFI, SUBIF, SUBII

MUL MULFF, MULFI, MULII

DIV DIVFF, DIVFI, DIVIF, DIVII

BAND BAND_II

BOR BOR_II

BXOR BXOR_II

BNOT BNOT_I

SHR SHR_II

SHL SHL_II

EQ EQ_II, EQ_FF

LT LT_II, LT_FF

LE LE_II, LE_FF

FORPREP FORPREP_IP, FORPREP_I1

FORLOOP FORLOOP_IP, FORLOOP_I1

TOINT, TOFLT, TOARRAYI, TOARRAYF

Performance

Benchmark Program Lua5.3 Ravi(LLVM) Luajit 2.1

fornum_test1 9.187 0.31 0.309

fornum_test2 9.57 0.917 0.906

fornum_test3 53.932 4.598 7.778

mandel(4000) 21.247 1.582 1.633

fannkuchen(11) 63.446 4.55 4.751

matmul(1000) 34.604 1.018 0.968

• Above benchmarks were run on Windows 64-bit
• Ravi code made use of static typing
• The LLVM JIT compilation time has been excluded in this comparison

Performance

Matmul(1000) implementation Timing Remarks

Lua code interpreted 36.05 seconds Slightly slower than standard Lua

Lua code JIT compiled 19.06 seconds Without type information hard to optimise
the code

LuaJIT using FFI 0.969 seconds Equally fast without FFI; includes JIT
compilation time

Ravi extensions and JIT compilation 0.986 seconds Excludes LLVM compilation time and omits
array bounds checks on reads

Ravi extensions without JIT 30.7 seconds Interpreted

Ravi Matrix using OpenBLAS 0.046 seconds Amazing performance!

Ravi Matrix using userdata metamethod
indexing without type checking

93.58 seconds Slower than interpreted Lua!

Ravi Matrix using userdata with type checking 211 seconds Type checking uses the optimisation
described in Lua mailing list

• Userdata indexing performance is very poor; even interpreted Lua is faster
• Indexing performance main reason for introducing arrays in Ravi

Lua API extensions

• Lua code can call following API functions:
• ravi.jit(mode) – sets JIT on/off; defaults to true
• ravi.dumplua(function) – dumps Lua bytecode
• ravi.compile(function) – JIT compiles a Lua function
• ravi.auto(mode[,min_size [, min_exeutions]]) – sets auto compilation;

defaults are true, 150, 50. Additionally if function has a fornum loop then also JIT compilation
is triggered when auto compilation is switched on.

• ravi.dumpir(function) – dumps the LLVM IR
• ravi.dumpasm(function) – dumps the generated assembly code
• ravi.optlevel(level) – sets optimizer level (0-3); default is 2
• ravi.sizelevel(level) – sets code size level (0-3)
• table.intarray(num_elements, init_value) – returns integer[]
• table.numarray(num_elements, init_value) – returns number[]
• table.slice(array, start_index, num_elements) – returns slice, original

array memory is frozen (i.e. array cannot be resized anymore due to memory reference)

C API extensions

LLVM

Pros

• Well documented intermediate
representation called LLVM IR

• The LLVM IRBuilder implements
type checks so that basic type
errors are caught by the builder

• Verifier to check that the
generated IR is valid

• CLANG can generate LLVM IR; very
useful for checking what the IR
should look like

Cons

• LLVM IR is low level – lots of
tedious coding required

• LLVM is huge in size. Lua on its own
is tiny - but when linked to LLVM
the resulting binary is a monster

• Compilation is costly so only
beneficial when Lua function will
be used again and again

• LLVM must be statically linked

JIT Compilation architecture

• The unit of compilation is a Lua function

• Each Lua function is compiled to a Module/Function in LLVM parlance
(Module=Compilation Unit)

• The compiled code is attached to the Lua function prototype (Proto)

• The compiled code is garbage collected as normal by Lua

• The decision to call a JIT compiled version is made in the Lua Infrastructure (specifically in
luaD_precall() function in ldo.c)

• The JIT compiler translates Lua/Ravi bytecode to LLVM IR - i.e. it does not translate Lua
source code

• There is no in-lining of Lua functions

• Generally the JIT compiler implements the same instructions as in lvm.c - however for
some bytecodes the code calls a C function rather than generating inline IR. These
opcodes are OP_LOADNIL, OP_NEWTABLE, OP_RAVI_NEWARRAYI,
OP_RAVI_NEWARRAYF, OP_SETLIST, OP_CONCAT, OP_CLOSURE, OP_VARARG

• Ravi represents Lua values as done by Lua 5.3 - i.e. in a 16 byte structure

Problem areas

• The Lua program counter (savedpc) is not maintained in JIT code
therefore debug API doesn’t work with JITed functions

• Maintaining the program counter would inhibit optimisation; perhaps
a debug mode can be implemented

• Co-routines not supported in JIT mode; therefore only main thread
executes JITed code; co-routines (secondary threads) always work in
interpreted mode. Resuming a JITed function is a hard problem

• Tail calls are implemented as normal calls in JITed code hence tail
recursion is limited to a finite depth

• Currently only 64-bit integer implemented

Batteries

• Aim to provide a bunch of standard libraries with Ravi; however these
are additional packages rather than part of Ravi

• Work ongoing in following areas:
• LLVM bindings – users can generate machine code from Lua

• Ravi-Matrix – wrapper for BLAS and LAPACK libraries; OpenBLAS supported

• Ravi-GSL – wrapper for GNU Scientific Library

• Ravi-Symbolic – will wrap SymPy’s SymEngine

Closing thoughts about Ravi

• In Lua, byte-code is generated while parsing – hence it is harder to implement static type checks; so far have
managed to workaround issues but the implementation is ugly – not yet confident that all corner cases are
handled correctly

• Introducing AST will degrade code generation performance and increase memory usage but on plus side may
allow future enhancements such as incorporating a macro facility similar to Metalua

• Lua’s parsing and code generation implementation is one of the most complex parts of Lua; documentation
is sparse in this area

• Maintaining compatibility with Lua could be difficult if significant changes occur to the Lua language or
implementation; hence need to ensure merging of upstream changes is relatively easy (complete new
codebase would cause the issues LuaJIT is having with incorporating upstream changes)

• Ravi as it stands is a specialized dialect for a particular use case (Desktop or Server, numeric computing); this
makes it difficult to get others interested in contributing to Ravi (so far no contributions)

• Making a more generic language would entail providing better support for aggregate types; but this is hard
to do in Lua due to existing semantics of tables (Wren illustrates how one might approach this)

• LuaJIT, Pure, Julia – all offer easy and efficient FFI; but there is no safe way to offer this in Ravi

• Function calls are expensive in Lua and Ravi – I would love to have a solution for in-lining functions; macros
seem the most promising approach

• It would be nice to be able to share generated code across Lua states as JIT compilation is expensive

Closing thoughts about Lua

• Small yet powerful

• Carefully designed implementation

• Somewhat geeky although appears simple at first glance (fornum
loops, logical operators, metatables, DIY class systems, co-routines)

• Core VM encapsulated in well defined API – even standard Lua
libraries need to go through the API

• Hugely appreciate the availability of the Lua test suite

• Sadly not well known in some programming communities

Links

• http://ravilang.org

• https://github.com/dibyendumajumdar/ravi

http://ravilang.org/
https://github.com/dibyendumajumdar/ravi

