
LuaRocks
past, present and future

Hisham Muhammad

Prologue: what is LuaRocks?

● A package manager for Lua modules
● Modules written in Lua (.lua), binary Lua

modules (.so/.dll) and Lua scripts
● Usual features you would expect from a

package manager
○ luarocks install <module>
○ luarocks remove <module>
○ ...

Rocks and rockspecs

● Rock: a LuaRocks package
○ archive files (actually .zip files)
○ *.src.rock - contains source code
○ *.win32-x86.rock - “binary rock”, contains compiled

binaries for a given platform
● Rockspec: a package specification file

○ A declarative Lua script, with rules on how to build
and package rocks

○ *.rockspec - a Lua file containing some tables

A rockspec

Part I
The past: a short history of

LuaRocks

Origins

● Kepler Project: research project to develop a
platform for web development using Lua
○ combining modules that already existed (LuaSocket,

CGILua) and adding the missing pieces
○ For more of the story, read Yuri Takhteyev’s book,

“Coding Places” :)
● I started (re)writing Unix makefiles to

automate the packaging/install process
● Common patterns emerged

LuaRocks 0.x-1.x: a bumpy start

● 0.x was a gradual evolution
○ the goal for 1.0 was for it to be able to build all

Kepler modules
● The rockspec format is unchanged since 1.0

○ We really care about compatibility
○ Learning the format and writing a rockspec are not

disposable efforts
● We got many things right, but we also got

some of them wrong...

Annoyances in LuaRocks 1.x

● LuaRocks 1.0 did not use the standard Lua
layout for modules
○ It wasn’t clear that there was a standard, especially

on Windows (Kepler defined its own)
○ On Unix at least, people expect the Unix defaults

■ We fortunately have a policy there!
● It needed a customized require()

○ People didn’t like this
○ It was a clean approach for versioning, though!

● We changed all of this in 2.0
○ Some bad 1st impressions are hard to dispel!

LuaRocks 2.0

● Plays nice with default paths
○ LR always tried to play nice with distros

(first of all, not stepping in their toes)
○ There are limits to what we can do in that front
○ But we’d like more integration! (we’ll get back to this)

● We still support multiple versioning
○ But now we use an optional loader

● You can install modules using LuaRocks but
you don’t need it to use them
○ So you could see it just as a build tool like make,

scons, etc.
○ This has actually improved recently in 2.1.x

Part II
Where we are now

LuaRocks is a reality

● 329 projects, 989 rockspecs

Still, we have a long way to go

LuaRocks 2.1

● LuaRocks itself is a rock
○ ...on Unix
○ Windows problem: how does a program reinstall

itself if you can’t delete open files?
● Making progress in the Windows front

○ Thijs Schreijer has been doing a lot of work there
○ The installer is now a Lua script
○ Better install-time detections all around

The “builtin” mode

● LuaRocks is build-tool agnostic
○ There was no clear leader in the Lua world
○ So we support make, cmake, autoconf, etc.

● But it provides its own Lua-centric build tool
○ build.type=”builtin”

● The numbers show its success
○ ~76% of all rocks use “builtin”, ~10% use “make”
○ 15% of the “builtin” rockspecs used to use “make”

and switched
■ mostly because builtin gets portability right

automatically
● Use case: BuildRoot

A current annoyance

● Making sure rocks are relocatable is a
delicate matter
○ Expected behavior on Windows
○ Unix devs mostly don’t care about it

● LuaDist applies rpath-type patches
● We annoy developers into complying, by

building in a temporary sandbox
○ This makes hardcoded paths to data files break
○ (But see http://github.com/hishamhm/datafile)

http://github.com/hishamhm/datafile

Rocks server

● http://luarocks.org/repositories/rocks/
● Fueled by rockspec submissions to the

luarocks-developers mailing list
● A few ones I still package myself
● A manual process

○ I went with a curated repo early on because of the
quality demands of the Lua community

○ ...and also because it was less work then

http://luarocks.org/repositories/rocks/
http://luarocks.org/repositories/rocks/

Part III
Where do we go from here?

Future of the rocks server

● Scalability
○ What happens when/if we reach 50,000 rocks?

■ (Will we ever?)
○ Downloading the whole manifest won’t be feasible
○ We’ll need a proper server-side handler

● Curation
○ I don’t want to take care of the repo forever
○ And I don’t scale, and I miss stuff, take days off, etc.

● MoonRocks
○ Switch the default repo to a “non-curated” one?

LuaDist and Lua for Windows

● LuaDist: CMake-based Lua package
manager
○ Some design differences, of course
○ CMake-only is a big con for some
○ Building non-Lua libs is a big pro on Windows

● Lua for Windows: “why not both?”
● Many opportunities for cooperation

○ We’ve been thinking about unifying the rockspec
format

○ LuaDist support for the LuaRocks builtin mode
● Looking forward to Peter’s talk!

Improving the interplay with distros

● Is there any interest?
○ from both sides?

● LuaRocks would be happy to be a build tool
○ Bad experiences with other language-specific

package managers ruined this for many distros
● What can we do?

○ We try to be system-agnostic
○ It would be nice if we could detect Lua modules

already present
○ Perhaps a metafile not unlike pkgconfig .pc files?

● Looking forward to Enrico’s talk!

Further development

● Make LuaRocks embeddable
so it can work as a plugin manager

● It can do so from the command line today
○ Sputnik, Tarantool

● It would be nice if it could do it as a library
○ This requires some refactoring, but stay tuned...

Long term, where should it go?

● Break it into libraries?
○ luarocks.fs, if cleaned up a bit,

could be useful on its own
○ LuaDist dependency handling was originally based

on the LR codebase -- why don’t we share it?
● Build types (make, cmake, builtin, ...)

and fetch protocols (file, http, git, svn, …)
are extensible -- what else can be too?
○ Can we get to a point where whenever someone

asks for a new feature we could just reply “just write
a new plugin”? :)

In conclusion

● LuaRocks is trying hard to be an enabler for
the Lua ecosystem
○ This is happening: we now see some rather nice

dependency trees (and less wheel-reinvention?)
○ Reach out to the developers
○ The rockspec format is its

main contribution
● but there’s just so much

it can do… it’s up to us
to build upon the ecosystem
○ Looking forward to Pierre’s talk,

which follows!

lua-jet
 lua-cjson
 lua-websockets
 luabitop
 copas
 coxpcall
 luasocket
 lua-ev
 lpack

 luahue
 penlight
 luafilesystem
 luasocket
 luajson
 lunit
 lpeg

