
Some thorny points in the design of Lua:
a personal perspective

Roberto Ierusalimschy

September 2011



the Devil is in the Details

0-based × 1-based arrays

List length

Bit library

Goto

Varargs

Automatic coercion

Numbers

Macros

2/31



Levels of Incompatibility

Not all incompatibilities are equal!

How frequently the incompatibility happens.

How easily we detect the incompatibility.

How easily we correct the incompatibility.

3/31



Detect Incompatibilities

compilation error

grep

run-time error

logical error

4/31



Correct Incompatibilities

extra definition/library
I change in a function

fixed “macro replacement”
I change in an operator

local change
I change in a control structure

global change
I change in a data structure

5/31



0-based × 1-based arrays

A continuous source of hatred towards Lua

All languages are 0-based; why does Lua have to be different?

6/31



Back in time . . .

Not all languages are 0-based: Icon, Fortran, AWK1, and Smalltalk
are 1-based; Snobol, Pascal, Modula, Modula-32, and Ada have
configurable bases.

Currently, many languages are 0-based due to influence from C.
I Ironically, none of them share the reason that made C 0-based (where

a[e] means *(a+e)).

However, several other languages are 0-based without that influence.
Examples include Scheme, Oberon, and Haskell.

1When AWK creates an array for you, that array’s indices are consecutive integers
starting at 1.

2Most examples are 1-based, but open arrays start at 0.
7/31



1-based arrays

Much more intuitive: first is 1st (not 0th).
I ISO-C: “E1[E2] designates the E2-th element of E1 (counting from

zero).”

Much easier for non programmers.

Easy for (good) programmers :)

Historical reason: Fortran used 1-based arrays, and most first users of
Lua had a Fortran background.

8/31



0-based arrays

More interesting mathematical properties.

Example: hash3: (i%N)

Example: circular lists:
I 0-based: (i + 1)%N, (i - 1)%N
I 1-based: i%N + 1, (i - 2)%N + 1

3assuming a proper % operator
9/31



Antecedents

Most languages use a mod operator with not-so-good mathematical
properties.

I C strikes again?
I it does not seem to bother many people

Lua 1.1 used degrees for trigonometric functions.
I More intuitive for the “layman”.
I Bad mathematical properties.
I Changed (corrected?) to radians in Lua 5.0 (!)

10/31



Change from degrees to radians

Not too frequent

Easy to detect
I grep

Easy to correct
I add conversion code

11/31



Change from 1-based to 0-based

All too frequent

Hard to detect
I logical errors

Hard to correct
I see mod example

12/31



Length of Lists

The crux of #t: Lua already has had several different mechanisms to
control the length of a list.

Probably the mechanism that changed most during Lua evolution.

intrinsic length

extrinsic length

13/31



Intrinsic Length

Depends only on the table itself.

Several more-or-less useful definitions.
I total number of elements
I larger numerical key
I minimal n such that . . .

Often, what should be the length is far from obvious:

t = {[1000] = 1}

Fact: no intrinsic definition can handle lists with nils at the end.

t = {4, 5, 10, nil, nil}

14/31



Extrinsic Length

Does not depend only on the table itself.

May depend on the “history”: previous operations applied to the table

There may be an operation setn.

There should be an operation setn.
I so that we can clone a table

15/31



setn

Verbose and somewhat expensive.
I how to add an element in a list?

What to do with lists without a previous setn?

What about constructors?

From previous experience, an explicit use of t.n seems the best
approach.

16/31



bitlib

a most-wanted feature in Lua

far from straightforward

main problem: numbers in Lua are double

in particular, -1 is different from 0xffffffff

most bitwise operations not defined for non-natural numbers

17/31



bitlib

signed × unsigned results
I bit.not(0) == 0xffffffff versus bit.not(0) == -1
I in Lua 5.2, all results are unsigned

overflows in shift/rotate
I bit.lshift(x, 33)
I in Lua 5.2, all bits shifted out

negative shifts
I bit.lshift(x, -33)
I in Lua 5.2, shift in the opposite direction

future problem: 64-bit operations

18/31



goto

goto fits nicely with Lua philosophy of “mechanisms instead of
policies”

I very powerful mechanism
I easy to explain

allows the implementation of several mechanisms
I break, continue, redo, break with labels, continue with labels, state

machines, etc.

I Yes, even break is redundant

19/31



Isn’t goto evil?

“The raptor fences aren’t out are they?”

continuations are much worse
I basic idea: l = getlabel(), goto(l)
I dynamic and unrestricted goto
I labels are first-class values

yet nobody complains; it is “cool” to support continuations

is the problem with goto that they are too restricted?

Fact: more often than we want to admit, we resort to tricks to avoid
the use of a goto

20/31



Varargs

old-style vararg (pre-5.1): extra arguments collected in a table
I with an n field!

new-style vararg: expression ‘...’ results in all extra arguments

More efficient way to collect varargs
I mainly to pass them to another function

21/31



Unintended consequences

small overhead even for non-vararg functions

demonizing table creation
I suddenly, {...} becomes unacceptable

people want to use ... for everything

not a good contribution to #t

22/31



Automatic Coercion

Very convenient to concatenate numbers with strings
I print("the value is " .. x)

Apparently convenient for things like print(fact(io.read()))
I function fact (n)

if n == 0 then return 1
else return n * fact(n - 1) end

end

Mostly useless for many other cases
I is it?

Somewhat complex

23/31



Automatic Coercion

May be removed in next version.

How frequent the incompatibility happens: should not be too
frequent, but who knows?

How easily we detect the incompatibility: medium difficulty. No
syntactic method, but usually the change should result in a run-time
error.

How easily we correct the incompatibility: very easy (add explicit
coercion).

24/31



Numbers

Lua started with floats as numbers

Changed to double in version 3.1 (1998)
I need for 32 bits
I bold decision at that time

We will need 64-bit numbers; we must break the 53-bit barrier.

Three options (at least):
I a larger number type (e.g. long double)
I more than one underlying representation
I more than one number type

25/31



long double

elegant solution for 64-bit machines

too expensive for other architectures
I not that bad with 80-bit extended precision plus the NaN trick
I 80-bit floats give exactly 64 bits of mantissa

Not as portable as regular Lua code

26/31



Multiple underlying representations

example: LNUM

Main problem: no clear arithmetic model

Operation may give wrong result even when correct result is
representable

I 0.5 * (2^60 - 2)

27/31



Multiple number types

too complex

different equal values:
I 4294967295 == 4294967295.0
I 4294967295 + 1 ~= 4294967295.0 + 1

subtle compatibility problems

28/31



Macros

several nice solutions in the small: token filters, m4-style, etc.

main problem (seldom discussed): programming in the large

29/31



Macros in the large

modularization
I what is the scope of a macro?
I how to preload macros for a load?

libraries providing macros
I same library can provide both macros and functions?
I how to “require” a library? (a predefined macro require?)

how to precompile code?
I should all macro libraries be present?
I do macros vanish in precompiled code?

error messages

30/31



the Devil is in the Details

or. . .

the color of the bike shed is not irrelevant

(by Chun Yeug Cheng and Ka Fai Lee, student competition, Reinventing the Bike Shed)

31/31



the Devil is in the Details

or. . . the color of the bike shed is not irrelevant

(by Chun Yeug Cheng and Ka Fai Lee, student competition, Reinventing the Bike Shed)

31/31


