
The Evolution of The Evolution of LuaLua

Waldemar Celes
Luiz Henrique de Figueiredo

Roberto Ierusalimschy

Lua Workshop 2006

The BeginningThe Beginning

Lua Workshop 2006

Data Entry ProgramsData Entry Programs

 1992: Tecgraf - partnership between PUC
and PETROBRAS (CENPES)

 Graphical data entry for several simulation
applications

d

Lua Workshop 2006

DEL - Data Entry LanguageDEL - Data Entry Language

:e gasket "gasket properties"
mat s # material
d f 0 # distance
y f 0 # settlement stress
t i 1 # facing type

d

 Form definition
parameter list
 types and default values

Lua Workshop 2006

DEL DEL limitationslimitations

 Input validation
 Conditional behavior
 Abstractions and basic arithmetic

:e gasket "gasket properties"
mat s # material
d f 0 # distance
y f 0 # settlement stress
t i 1 # facing type

:p gasket.m>30
gasket.m<3000
gasket.y>335.8
gasket.y<2576.8

d

Lua Workshop 2006

Programa Gráfico MestrePrograma Gráfico Mestre

 1993: another project with PETROBRAS
 configurable program to visualize geologic profiles

Lua Workshop 2006

SOLSOL
Simple Object LanguageSimple Object Language

 Language to describe structured data
not totally unlike XML
syntax inspired by BibTeX
type @track {x:number, y:number=23, z}

type @line {t:@track=@track{x=8}, z:number*}

-- creates an object 't1', of type `track’
t1 = @track {y=9, x=10, z="hi!"}

l = @line {t=@track{x=t1.y, y=t1.x}, z=[2,3,4] }

Lua Workshop 2006

SOL SOL limitationslimitations

 Stronger abstraction mechanisms
 Some procedural facilities

Lua Workshop 2006

1993: Lua is Born1993: Lua is Born

 Convergence of both languages
procedural paradigm
data-description mechanisms

 Powerful features
 function abstractions
 full arithmetic syntax

 Extensible extension language

Lua Workshop 2006

Lua Lua version version 1.01.0

 Called 1.0 a posteriori
 The simplest thing that could possibly work
 Standard implementation, with yacc/lex
 Requirements:

simple, portable, extensible, embedable, small

Lua Workshop 2006

Lua 1.1 (1994)Lua 1.1 (1994)

 Faster
 First public distribution

 ftp
 Free for academic uses, but not free for

comercial uses

Lua Workshop 2006

Lua 2Lua 2

 Lua 2.1 (Feb 1995) - 2.5 (Nov 1996)
 Free license
 Fallbacks

suport for OO programming
 Pattern matching

Lua 2.5
 CGILua

called HTMLLua (1995)

Lua Workshop 2006

International ExposureInternational Exposure

 First home page in 1995
http://www.inf.puc-rio.br/~roberto/lua

 e-mail contact with far-away users
 June 1996 - paper in S:P&E
 Dez 1996 - paper in Dr. Dobb's
 Beginning of 1997 - discussion list

end of 97 - more than 100 subscribers, should
we try a newsgroup?

Lua Workshop 2006

Lua 3Lua 3

 Lua 3.0 (July 1997) - Lua 3.2 (July 1999)
 1998, Lua logo
 1998, Cameron Laird wrote in SunWorld:

Its user base is also small; there might be only a few tens
of thousands of Lua programmers in the world. They're
very fond of this language, though, and the imminent
explosion of ubiquitous embedded processing (computers
in your car, in your plumbing, and in your kitchen
appliances) can only work in favor of Lua.

Lua Workshop 2006

Lua 4Lua 4

 Lua 4.0 (Nov 2000 - March 2003)
 New API with lua_State
 Several appearances in Brazilian press
 March 2001, new site: www.lua.org

 thanks to Jim Mathies
 Few months later, users site: lua-users.org
 After two years, a single release 4.0.1

 less than 10 bugs
 Several plans for 4.1

Lua Workshop 2006

Lua 5Lua 5

 5.0 (April 2003), 5.1 (Feb 2006)
 Coroutines, lexical scoping
 Register-based virtual machine
 New implementation for tables
 Modules
 Incremental garbage-collector

Lua Workshop 2006

Another View of Lua EvolutionAnother View of Lua Evolution

Lua Workshop 2006

Evolution: PortabilityEvolution: Portability

 Stick to ANSI
hard decision when we started
Sun compiler was K&R

 Much improved
 first versions do not compile on Linux ;)

 Closely following ANSI C
Lua and C compilers

Lua Workshop 2006

Evolution: PortabilityEvolution: Portability

 General move from conforming hosted
implementation to conforming freestanding
implementation (in the core)
no I/O in the core
no use of files in the core
user-provided memory-allocation mechanisms

Lua Workshop 2006

Evolution: PortabilityEvolution: Portability

 But: loadlib deeply supported
 Module system
 luaconf.h

 Use of vararg and structs in lua.h
only in restricted ways

Lua Workshop 2006

PortabilityPortability Evolution: Examples Evolution: Examples

 All kinds of problems with names
exp, size, Object,

 Warnings
no standard way to say "we know what we are

doing"
 Compiler writers as language designers

tmpnam in Linux, string functions in Windows

Lua Workshop 2006

Portability Evolution: ExamplesPortability Evolution: Examples

while(isalpha(*s++)) ...

The header <ctype.h> declares several functions useful for
classifying and mapping characters. In all cases the argument is an
int, the value of which shall be representable as an unsigned char
or shall equal the value of the macro EOF.

for (; p >= base_pointer; p--) ...

union of pointers x pointer to union

Lua Workshop 2006

Evolution: Evolution: EmbedabilityEmbedability

 Portability
 Freestanding implementation
 Weak references

non-lock references, weak tables
 Userdata

 from pointer to memory
 finalizers
 tags, metatables

 Independent states

Lua Workshop 2006

Evolution: SimplicityEvolution: Simplicity

 Runs against all other aspects
not always ;)

 Lua 1.1: API with 30 functions; 4000 lines of
code

 Lua 5.1: API with 79 (core) + 36 (auxlib)
functions; 12000 (core) + 5000 (libs) lines of
code
~3x (core) + 1 (libs)

Lua Workshop 2006

Evolution: SimplicityEvolution: Simplicity

/* Lua 1.1 */

int main (int argv, char **argc) {
 iolib_open();
 strlib_open();
 mathlib_open();
 lua_dofile(argv[1]);
 return 0;
}

Lua Workshop 2006

Evolution: SimplicityEvolution: Simplicity

/* Lua 5.1 */

int main (int argv, char **argc) {
 lua_State *L = luaL_newstate();
 luaL_openlibs(L);
 if (luaL_loadfile(L, argv[1]) ||
 lua_pcall(L, 0, 0, 0))
 fprintf(stderr, "error: %s\n",
 lua_tostring(L, -1));
 lua_close(L);
 return 0;
}

Lua Workshop 2006

Evolution: PerformanceEvolution: Performance

0.33.00.4Lua 5.0
0.33.30.4Lua 5.1

0.43.70.6Lua 4.0
0.53.50.7Lua 3.2
0.53.70.8Lua 3.1
0.53.80.7Lua 3.0
0.43.30.7Lua 2.5
0.54.40.8Lua 2.4

4.50.8Lua 2.2
4.10.8Lua 2.1
2.21.8Lua 1.1
2.21.8Lua 1.0

heapsortfibonaccisieveVersion

Lua Workshop 2006

Feature EvolutionFeature Evolution

Lua Workshop 2006

FunctionsFunctions

 First-class values since Lua 1.0
 But quite different from functions in Lua 5.1

Lua Workshop 2006

Functions in Lua 1.0Functions in Lua 1.0

 Function definition assigned at compile time
 Must be a global name
 Cannot print function values

print(a())
function a() end

print(a)
function a.x() end

Lua Workshop 2006

Functions in Lua 2.2Functions in Lua 2.2

 Function definition is an assignment
 Function "name" may be a field
 Sugar for methods

function a.x[10]:m()
end

Lua Workshop 2006

Functions in Lua 3Functions in Lua 3

 Lua 3.0: vararg functions
 Lua 3.0: types function and cfunction

unified
 Lua 3.1: anonymous functions with upvalues!

function createK (x)
 return function ()
 return %x
 end
end

Lua Workshop 2006

Functions in Lua 5Functions in Lua 5

 Full lexical scoping

 Proper tail calls
 Lua 5.1: new vararg expression

function createCount (x)
 return function ()
 x = x + 1
 return x
 end
end

Lua Workshop 2006

Chunks and FunctionsChunks and Functions

 In Lua 2.4, chunks are functions internally
debug interface could capture them illegally

 In Lua 2.5, chunks can return values
 In Lua 3.1, chunks are quite regular functions

nesting
 local variables

 In Lua 5.0, "do" becomes "load" + "call"
chunks are vararg functions

Lua Workshop 2006

ErrorError MessagesMessages function f(x)
 return x + y
end

print(f(10))

Lua 1.0: without debug pragma
lua: unexpected type at conversion to number

Lua Workshop 2006

ErrorError MessagesMessages $debug
function f(x)
 return x + y
end

print(f(10))

Lua 1.0: with debug pragma
lua: unexpected type at conversion to number
 in statement begining at line 3
 in function "f" of file "a"
 active stack
 -> function "f" of file "a"

Lua Workshop 2006

ErrorError MessagesMessages $debug
function f(x)
 return x + y
end

print(f(10))

Lua 2.1:
lua: unexpected type at conversion to number
 active stack:
 -> function "f" at file "a":3

(Without pragma it is similar to Lua 1)

Lua Workshop 2006

ErrorError MessagesMessages $debug
function f(x)
 return x + y
end

print(f(10))

Lua 3.0:
lua: unexpected type at arithmetic operation
Active Stack:
 function f at line 3 [in file a]
 main of a at line 6

(“at line” only with pragmas)

Lua Workshop 2006

ErrorError MessagesMessages function f(x)
 return x + y
end

print(f(10))

Lua 4.0: no more pragmas
a: attempt to perform arithmetic on global `y'
 (a nil value)
stack traceback:
 1: function `f' at line 2 [file `a']
 2: main of file `a' at line 5

Lua Workshop 2006

ErrorError MessagesMessages function f(x)
 return x + y
end

print(f(10))

Lua 5.0:
a:2: attempt to perform arithmetic
 on global `y' (a nil value)
stack traceback:
 a:2: in function `f'
 a:5: in main chunk
 [C]: ?

Lua Workshop 2006

What are the costs of a feature?What are the costs of a feature?

Implementation is a small fraction
of the cost of a new feature!

Lua Workshop 2006

What are the costs of a feature?What are the costs of a feature?

 Documentation
simple and precise description
 independent of implementation

 Testing and maintenance
how to test all aspects
more things to fail now and later

Lua Workshop 2006

What are the costs of a feature?What are the costs of a feature?

 Conceptual integrity
how the feature interacts with other features
some features demand new facilities

 Impact on design space for future evolution
a poor feature may stand in the way of a better

one
 Impact on alternative implementations

Lua Workshop 2006

Example: What is the cost ofExample: What is the cost of
MultipleMultiple Returns?Returns?
 Documentation mostly about interation with

other facilities
 “non local” documentation

 Conceptual integrity
 took long time to current design

 f(g()) in 1.0-1.1; back in Lua 4.0
 {f()} only in 5.0!

Lua Workshop 2006

Example: What is the cost ofExample: What is the cost of
MultipleMultiple Returns?Returns?
 Impact on design space for future evolution

 int return in C functions
multiple values in resume-yield

 Impact on alternative implementations
 function stack size cannot be statically computed
 tail-call implementation
 implementations in virtual machines (e.g., JVM)

Lua Workshop 2006

Example:Example: What is the cost ofWhat is the cost of
Incremental GC?Incremental GC?
 Practically no impact on documentation
 HUGE impact on testing
 Small impact on design space for future

evolution
 finalizers, weak tables

 Big impact on alternative implementations
several assumptions spread around the code

Lua Workshop 2006

Example:Example: What is the cost ofWhat is the cost of
strsubstrsub??
 Innocent-looking function in Lua 1.0
 Big impact on conceptual integrity

particular way of interpreting string indices
 Set the tone for all other string-manipulation

functions
 string.find(s, "p") x
string.match(s, "()p()")

 Maybe Icon style would be better?

Lua Workshop 2006

Lua NowLua Now
 Thirteen years
 More and more stable

 less and less unstable
 Still the same requirements

simplicity, portability, embeadability, smallness
 Only language developed outside an

industrialised country to achieve global
relevance

Lua Workshop 2006

BooksBooks
Lua 5.1 Reference Manual
by Roberto Ierusalimschy,
Luiz H. de Figueiredo,
Waldemar Celes.
Lua.org (2006)

Programming in Lua
by Roberto Ierusalimschy.
Lua.org (2006)

Game Development with Lua
by Paul Schuytema, Mark Manyen.
Charles River (2005)

Lua Workshop 2006

BooksBooks

Beginning Lua Programming
by Kurt Jung and Aaron Brown.
Wrox (Feb 5, 2007)

Programmieren mit Lua
by Roberto Ierusalimschy.
Open Souce Press (Set 2006)

Lua Workshop 2006

www.lua.org

