
114 COMMUNICATIONS OF THE ACM | NOVEMBER 2018 | VOL. 61 | NO. 11

contributed articles

build a new abstraction. Encapsu-
lation in the C language provides a
good example of a policy. The ISO C
specification offers no mechanism
for modules or interfaces.9 Neverthe-
less, C programmers leverage existing
mechanisms (such as file inclusion
and external declarations) to achieve
those abstractions. On top of such ba-
sic mechanisms provided by the C lan-
guage, policy adds several rules (such
as “all global functions should have a
prototype in a header file” and “header
files should not define objects, only de-
clare them”). Many programmers do
not know these rules (and the policy as
a whole) are not part of the C language.

Accordingly, in the design of Lua,
we have replaced addition of many
different features by creating instead
only a few mechanisms that allow
programmers to implement such fea-
tures themselves.6 The motto leads
to a design that is economical in con-
cepts. Lua offers exactly one general
mechanism for each major aspect of
programming: tables for data; func-
tions for abstraction; and coroutines
for control. On top of these building
blocks, programmers implement sev-
eral other features, including modules,
objects, and environments, with the
aid of minimal additions (such as syn-
tactic sugar) to the language. Here, we
look at how this motto has worked out
in the design of Lua.

Design Goals
Like other scripting languages, Lua
has dynamic types, dynamic data struc-
tures, garbage collection, and an eval-
like functionality. Consider Lua’s par-
ticular set of goals:

L UA IS A scripting language developed at the Pontifical
Catholic University of Rio de Janeiro (PUC-Rio) that
has come to be the leading scripting language for
video games worldwide.3,7 It is also used extensively in
embedded devices like set-top boxes and TVs and in
other applications like Adobe Photoshop Lightroom
and Wikipedia.14 Its first version was released in 1993.
The current version, Lua 5.3, was released in 2015.

Though mainly a procedural language, Lua lends
itself to several other paradigms, including object-
oriented programming, functional programming, and
data-driven programming.5 It also offers good support
for data description, in the style of JavaScript and
JSON. Data description was indeed one of our main
motivations for creating Lua, some years before the
appearance of XML and JavaScript.

Our motto in the design of Lua has always been
“mechanisms instead of policies.” By policy, we mean
a methodical way of using existing mechanisms to

A Look at
the Design
of Lua

DOI:10.1145/3186277

Simplicity, small size, portability,
and embeddability set Lua apart
from other scripting languages.

BY ROBERTO IERUSALIMSCHY, LUIZ HENRIQUE DE FIGUEIREDO,
AND WALDEMAR CELES

 key insights
˽˽ What sets Lua apart from other scripting

languages is its particular set of goals:
simplicity, small size, portability, and
embeddability.

˽˽ The entire implementation of Lua has
25,000 lines of C code; the binary for
64-bit Linux has 200k bytes.

˽˽ Since its inception, Lua was designed
to interoperate with other languages. I

M
A

G
E

 B
Y

 B
U

G
 F

I
S

H

http://dx.doi.org/10.1145/3186277

NOVEMBER 2018 | VOL. 61 | NO. 11 | COMMUNICATIONS OF THE ACM 115

116 COMMUNICATIONS OF THE ACM | NOVEMBER 2018 | VOL. 61 | NO. 11

contributed articles

access global variables in a state, and
perform other basic tasks. The stand-
alone Lua interpreter is a tiny applica-
tion written on top of the library.

These goals have had a deep impact
on our design of Lua. Portability re-
stricts what the standard libraries can
offer to what is available in ISO C, in-
cluding date and time, file and string
manipulation, and basic mathemati-
cal functions. Everything else must be
provided by external libraries. Simplic-
ity and small size restrict the language
as a whole. These are the goals behind
the economy of concepts for the lan-
guage. Embeddability has a subtler
influence. To improve embeddability,
Lua favors mechanisms that can be
represented naturally in the Lua-C API.
For instance, Lua tries to avoid or re-
duce the use of special syntax for a new
mechanism, as syntax is not accessible
through an API. On the other hand,
mechanisms exposed as functions are
naturally mapped to the API.

Following the motto “mechanisms
instead of policies” has a clear impact on
simplicity and small size. It also affects
embeddability by breaking complex
concepts into simpler ones that are
easier to represent in the API.

Lua supports eight data types: nil,
boolean, number, string, userdata,
table, function, and thread, which rep-
resents coroutines. The first five are
no surprise. The last three give Lua
its flavor and are the ones we discuss
here. However, given the importance

of embeddability in the design of Lua,
we first briefly introduce the interface
between Lua and its host language.

The Lua–C API
To illustrate the concept of embedding
in Lua, consider a simple example of a
C program using the Lua library. Take
this tiny Lua script, stored in a file

pi = 4 * math.atan(1)

Figure 1 shows a C program that runs
the script and prints the value of pi.
The first task is to create a new state
and populate it with the functions from
the standard libraries (such as math.
atan). The program then calls luaL _
loadfile to load (precompile) the
given source file into this state. In the
absence of errors, this call produces a
Lua function that is then executed by
lua _ pcall. If either loadfile or
pcall raises an error, it produces an
error message that is printed to the
terminal. Otherwise, the program gets
the value of the global variable pi and
prints its value.

The data exchange among these API
calls is done through an implicit stack
in the Lua state. The call to luaL _
loadfile pushes on the stack either
a function or an error message. The
call to lua _ pcall pops the func-
tion from the stack and calls it. The
call to lua _ getglobal pushes the
value of the global variable. The call to
lua _ tonumber projects the Lua val-
ue on top of the stack to a double. The
stack ensures these values remain vis-
ible to Lua while being manipulated by
the C code so they cannot be collected
by Lua’s garbage collector.

Besides the functions used in this
simple example, the Lua–C API (or “C
API” for short) offers functions for all
kinds of manipulation of Lua values,
including pushing C values (such as
numbers and strings) onto the stack,
calling functions defined by the script,
and setting variables in the state.

Tables
“Table” is the Lua term for associa-
tive arrays, or “maps.” A table is just
a collection of entries, which are pairs
〈key, value〉.

Tables are the sole data-structuring
mechanism in Lua. Nowadays,
maps are available in most scripting

Simplicity. Lua aims to offer only a
few powerful mechanisms that can ad-
dress several different needs, instead
of myriad specific language constructs,
each tailored for a specific need. The
Lua reference manual is small, with
approximately 100 pages covering the
language, its standard libraries, and
the API with C;

Small size. The entire implementa-
tion of Lua consists of 25,000 lines of
C code; the binary for 64-bit Linux has
200k bytes. Being small is important
for both portability, as Lua must fit into
a system before running there, and em-
bedding, as it should not bloat the host
application that embeds it;

Portability. Lua is implemented in
ISO C and runs in virtually any system
with as little as 300k bytes of memory.
Lua runs in all mainstream systems
and also on mainframes, inside OS ker-
nels (such as the NetBSD kernel), and
on “bare metal” (such as NodeMCU
running on the ESP8266 microcon-
troller); and

Embeddability. Lua was designed
since its inception to interoperate with
other languages, both by extending—
allowing Lua code to call functions
written in a foreign language—and by
embedding—allowing foreign code to
call functions written in Lua.8 Lua is
thus implemented not as a standalone
program but as a library with a C API.
This library exports functions that cre-
ate a new Lua state, load code into a
state, call functions loaded into a state,

Figure 1. A C program using the Lua library.

#include <stdio.h>
#include “lauxlib.h”
#include “lualib.h”

int main (int argc, char **argv) {
 // create a new state
 lua_State *L = luaL_newstate();
 // load the standard libraries
 luaL_openlibs(L);
 // try to load the given file and then
 // call the resulting function
 if (luaL_loadfile(L, argv[1]) != LUA_OK ||
 lua_pcall(L, 0, 0, 0) != LUA_OK) {
 // some error occurred; print the error message
 fprintf(stderr, “lua: %s\n”, lua_tostring(L, -1));
 }
 else { // code ran successfully
 lua_getglobal(L, “pi”);
 printf(“pi: %f\n”, lua_tonumber(L, -1));
 }
 lua_close(L); // close the state
 return 0;
}

NOVEMBER 2018 | VOL. 61 | NO. 11 | COMMUNICATIONS OF THE ACM 117

contributed articles

An interesting property of this im-
plementation is that it gives sparse
arrays for free. For instance, when a
programmer creates a table with three
entries at indices 5, 100, and 3421, Lua
automatically stores them in the hash
part, instead of creating a large array
with thousands of empty slots.

Lua also uses tables to implement
weak references. In languages with
garbage collection, a weak reference is
a reference to an object that does not
prevent its collection as garbage.10 In
Lua, weak references are implemented
in weak tables. A weak table is thus a
table that does not prevent its contents
from being collected. If a key or a value
in an entry is collected, that entry is
simply removed from the table; we dis-
cuss later how to signal that a table is
weak. Weak tables in Lua also subsume
ephemerons.4

Weak tables seem to contradict the
motto “mechanisms instead of poli-
cies” because weak reference is a more
basic concept than weak table. Weak
tables would then be a policy, a particu-
lar way of using weak references. How-
ever, given the role of tables in Lua, it
is natural to use them to support weak
references without introducing yet an-
other concept.

Functions
Lua supports first-class anonymous
functions with lexical scoping, infor-
mally known as closures.13 Several non-
functional languages nowadays (such
as Go, Swift, Python, and JavaScript)
offer first-class functions. However, to
our knowledge, none uses this mecha-
nism as pervasively as Lua.

All functions in Lua are anonymous.
This is not immediately clear in the
standard syntax for defining a function

function add (x, y)
 return x + y
end

Nevertheless, this syntax is just syn-
tactic sugar for an assignment of an
anonymous function to a variable

add = function (x, y)
 return x + y
end

Most dynamic languages offer some
kind of eval function that evaluates a

languages, as well as in several non-
scripting ones, but in Lua maps are
ubiquitous. Indeed, Lua programmers
use tables not only for all kinds of data
structures (such as records, arrays,
lists, sets, and sparse matrices) but
also for higher-level constructs (such as
modules, objects, and environments).

Programmers implement records
using tables whose indices are strings
representing field names. Lua sup-
ports records with syntactic sugar,
translating a field reference like t.x to
a table-indexing operation t[“x”].

Lua offers constructors, expressions
that create and initialize tables. The
constructor {} creates an empty table.
The constructor {x=10,y=20} creates
a table with two entries, one mapping
the string "x" to the integer 10, the
other mapping "y" to 20. Program-
mers see this table as a record with
fields "x" and "y".

Programmers implement arrays
with tables whose indices are positive
integers. Constructors also support
this usage. For example, the expression
{10,20,30} creates a table with three
entries, mapping 1 to 10, 2 to 20, and 3
to 30. Programmers see the table as an
array with three elements.

Arrays have no special status in the
semantics of Lua; they are just ordi-
nary tables. However, arrays pervade
programming. Therefore, implemen-
tation of tables in Lua gives special
attention to their use as arrays. The in-
ternal representation of a table in Lua
has two parts: an array and a hash.7 If
the array part has size N, all entries
with integer keys between 1 and N are
stored in the array part; all other en-
tries are stored in the hash part. The
keys in the array part are implicit and
do not need to be stored. The size N of
the array part is computed dynamical-
ly, every time the table has to rehash
as the largest power of two such that
at least half the elements in the array
part will be filled. A generic access
(such as t[i]) first checks whether i
is an integer in the range [1, N]; this
is the most common case and the one
programmers expect to be fast. If so,
the operation gets the value in the ar-
ray; otherwise, it accesses the hash.
When accessing record fields (such
as t.x) the Lua core knows the key is
a string and so skips the array test, go-
ing directly to the hash.

Lua offers exactly
one general
mechanism for
each major aspect
of programming:
tables for data;
functions for
abstraction; and
coroutines for
control.

118 COMMUNICATIONS OF THE ACM | NOVEMBER 2018 | VOL. 61 | NO. 11

contributed articles

nisms in Lua, including modules,
object-oriented programming, and
exception handling. We now discuss
some of them, emphasizing how they
contribute to Lua’s design goals.

Modules. The construction of mod-
ules in Lua is a nice example of the
use of first-class functions and tables
as a basis for other mechanisms. At
runtime, a module in Lua is a regular
table populated with functions, as well
as possibly other values (such as con-
stants). Consider this Lua fragment

print(math.sin(math.pi/6))
 --> 0.5

Abstractly, programmers read this
code as calling the sin function from
the standard math module, using the
constant pi from that same module.
Concretely, the language sees math as
a variable (created when Lua loaded its
standard libraries) containing a refer-
ence to a table. That table has an entry
with the key "sin" containing the sine
function and an entry "pi" with the
value of π.

Statically, a module is simply the
chunk that creates its corresponding
table. Figure 2 shows a standard idiom
for defining a simple module in Lua.
The code creates a table in the local
variable M, populates the table with
some functions, and returns that table.
Recall that Lua loads any chunk as the
body of an enclosing anonymous func-
tion; this is how one should read that
code. The variable M is local to that
enclosing function and the final state-
ment returns from that function.

Once defined in a file mymodule.
lua, a programmer can use that mod-
ule with code like thisa

local vec = require “mymodule”
print(vec.norm(vec.new(10, 10)))
 --> 14.142135623731

In it, require is a regular func-
tion from the standard library; when
the single argument to a function is a
literal string, the code can omit the pa-
rentheses in the call. If the module is
not already loaded, require searches
for an appropriate source for the given
name (such as by looking for files in a
list of paths), then loads and runs that
code, and finally returns what the code
returns. In this example, require re-
turns the table M created by the chunk.

Lua leverages tables, first-class func-
tions, and load to support modules.
The only addition to the language is the
function require. This economy is
particularly relevant for an embedded
language like Lua. Because require is
a regular function, it cannot create lo-
cal variables in the caller’s scope. Thus,
in the example using "mymodule", the
programmer had to define explicitly
the local variable vec. Yet this limita-
tion gives programmers the ability to
give a local name to the module.

On the one hand, the construction
of modules in Lua is not as elegant
as a dedicated language mechanism
could be, with explicit import and ex-
port lists and other refinements, as in
the “import machinery” in Python.12
On the other hand, this construction
has a clear semantics that requires no

a	 To test these pieces of code interactively, remove
the local from the variable initializations. In
interactive mode, Lua loads each line as an in-
dependent chunk. A local variable is thus visible
only in the line where it was defined.

piece of code produced at runtime. In-
stead of eval, Lua offers a load func-
tion that, given a piece of source code,
returns a function equivalent to that
code. We saw a variant of load in the C
API in the form of luaL _ loadfile.
Consider the following piece of code

local id = 0
function genid ()
 id = id + 1
 return id
end

When one loads it, the function
load returns an anonymous function
equivalent to the following code

function ()
 local id = 0
 function genid ()
 id = id + 1
 return id
 end
end

So, if a programmer loads Lua code
stored in a string and then calls the re-
sulting function, the programmer gets
the equivalent of eval.

We use the term “chunk” to denote
a piece of code fed to load (such as a
source file). Chunks are the compila-
tion units of Lua. When a programmer
uses Lua in interactive mode, the Read-
Eval-Print Loop (REPL) handles each
input line as a separate chunk.

The function load simplifies the
semantics of Lua in two ways: First, un-
like eval, load is pure and total; it has
no side effects and it always returns a
value, either a function or an error mes-
sage; second, it eliminates the distinc-
tion between “global” code and “func-
tion” code, as in the previous chunk
of code. The variable id, which in the
original code appears outside any func-
tion, is seen by Lua as a local variable
in the enclosing anonymous function
representing the script. Through lexi-
cal scoping, id is visible to the func-
tion genid and preserves its value be-
tween successive calls to that function.
Thus, id works like a static variable in
C or a class variable in Java.

Exploring Tables and Functions
Despite their apparent simplicity—or
because of it—tables and functions
form a basis for several other mecha-

Figure 2. A simple module in Lua.

local M = {}

function M.new (x, y)
 return {x = x, y = y}
end

function M.add (u, v)
 return M.new(u.x+v.x, u.y+v.y)
end

function M.norm (v)
 return math.sqrt(v.x^2 + v.y^2)
end

return M

Figure 3. A module in Lua using
environments. 	

local sqrt = math.sqrt
local _ENV = {}

function new (x, y)
 return {x = x, y = y}
end

function add (u, v)
 return new(u.x+v.x, u.y+v.y)
end

function norm (v)
 return sqrt(v.x^2 + v.y^2)
end

return _ENV

NOVEMBER 2018 | VOL. 61 | NO. 11 | COMMUNICATIONS OF THE ACM 119

contributed articles

fines the module components directly
as free variables; instead of M.norm, it
uses only norm, which Lua translates
to _ ENV.norm. The code ends the
module with return _ ENV.

This method for writing modules
has two benefits: First, all external
functions and modules must be ex-
plicitly imported right at the start; and
second, a module cannot pollute the
global space by mistake.

Object-oriented programming.
Support for object-oriented program-
ming in Lua follows the pattern we
have been seeing in this article: It tries
to build upon tables and functions,
adding only the minimum necessary
to the language.

Lua uses a two-tier approach to
object-oriented programming. The
first is implemented by Lua and the
second by programmers on top of the
first one. The first tier is class-based.
Both objects and classes are tables,
and the relation “instance of” is dy-
namic. Userdata, which represents C
values in Lua, can also play the role of
objects. Classes are called metatables.
In this first tier, a class can define only
methods for the standard operators
(such as addition, subtraction, and
concatenation). These methods are
called metamethods.

Figure 4 illustrates how a program-
mer would use this basic mechanism
to perform arithmetic on 2D vectors.
The code starts with a table mt that
would be the metatable for the vec-
tors. The code then defines a function
newVector to create 2D vectors. Vec-
tors are tables with two fields, x and y.
The standard function setmetatable
establishes the “instance of” relation

further explanation. It also has an inex-
pensive implementation. Finally, and
also quite important, it has an easy in-
tegration with the C API: One can eas-
ily create modules in C; create mixed
modules with some functions defined
in Lua and others in C; and for C code
call functions inside modules. The API
needs no additional mechanisms to do
these tasks; all it needs is the existing
Lua mechanisms to manipulate tables
and functions.

Environments. Local variables in
Lua follow a strict lexical scoping disci-
pline. A local variable can be accessed
only by code that is lexically written in-
side its scope. Lexical scoping implies
that local variables are one of the few
constructions that do not cross the C
API, as C code cannot be lexically in-
side Lua code.

A program in Lua can be composed
of multiple chunks (such as multiple
modules) loaded independently. Lexi-
cal scoping implies that a module
cannot create local variables for other
chunks. Variables like math and re-
quire, created by the standard librar-
ies, should thus be created as global
variables. However, using global vari-
ables in a large program can easily
lead to overly complex code, entan-
gling apparently unrelated parts of a
program. To circumvent this conflict,
Lua does not have global variables
built into the language. Instead, it
offers a mechanism of environments
that, by default, gives the equivalent
of global variables. Nevertheless, as we
show later in this article, environments
allow other possibilities.

Recall that any chunk of code in Lua
is compiled as if inside an anonymous
function. Environments add two sim-
ple rules to this translation: First, the
enclosing anonymous function is com-
piled as if in the scope of a local vari-
able named _ ENV; and second, any
free variable id in the chunk is trans-
lated to _ ENV.id. For example, Lua
loads the chunk print(v) as if it was
written like this

local _ ENV = <<some given value>>
return function ()
 _ ENV.print(_ ENV.v)
end

By default, load initializes _ ENV
with a fixed table, called the global

environment. All chunks thus share
this same environment by default, giv-
ing the illusion of global variables; in
the chunk just mentioned, both v and
print refer to fields in that table and
thus behave as global variables. Howev-
er, both load and the code being load-
ed can modify _ ENV to any other value.
The _ ENV mechanism allows different
scripts to have different environments,
functions to be called with different en-
vironments, and other variations.

The translation of free variables
needs semantic information to deter-
mine whether a variable is free. Never-
theless, the translation itself is purely
syntactical. In particular, _ ENV is a
regular variable, needing no special
treatment by the compiler. The pro-
grammer can assign new values to
_ ENV or declare other variables with
that name. As an example, consider
this fragment

do
 local _ ENV = {}
 ...
end

Inside the do block, all free vari-
ables refer to fields in the new table
_ ENV. Outside the block, all free vari-
ables refer to the default environment.

A more typical use of _ ENV is for
writing modules. Figure 3 shows how
to rewrite the simple module of Figure
2 using environments. In the first line,
where the code “imports” a function
from the math module, the environ-
ment is still the default one. In the
second line, the code sets the envi-
ronment to a new table that will rep-
resent the module. The code then de-

Figure 4. An example of metatables.

local mt = {}

function newVector (x, y)
 local p = {x = x, y = y}
 setmetatable(p, mt)
 return p
end

function mt.__add (p1, p2)
 return newVector(p1.x + p2.x, p1.y + p2.y)
end

-- example of use
A = newVector(10, 20)
B = newVector(20, -40)
C = A + B
print(C.x, C.y) --> 30 -20

120 COMMUNICATIONS OF THE ACM | NOVEMBER 2018 | VOL. 61 | NO. 11

contributed articles

prototypes. In it, programmers repre-
sent objects also by tables or userdata.
Each object can have a prototype, from
which it inherits methods and fields.
The prototype of an object obj is the
object stored in the __index field of
the metatable of obj. One can then
write obj.foo(x), and Lua will retrieve
the method foo from the object’s pro-
totype, through delegation.

However, if we stopped here, there
would be a flaw in the support for
object-oriented programming in Lua.
After finding and calling the method
in the object’s prototype, there would
be no way for the method to access the
original object, which is the intend-
ed receiver. Lua solves this problem
through syntactic sugar. Lua translates
a “method” definition like

function Proto:foo (x)
 ...
end

to a function definition:

function Proto.foo (self, x)
 ...
end

Likewise, Lua translates a “method”
call obj:foo(x) to obj.foo(obj,x).
When the programmer defines a
“method”—a function using the colon
syntax—Lua adds a hidden parameter
self. When the programmer calls a
“method” using the colon syntax, Lua
provides the receiver as the argument to
the self parameter. There is no need
to add classes, objects, or methods to
the language, merely syntactic sugar.

Figure 5 illustrates these concepts.
First the code creates a prototype, the
table Account. The code then creates
a table mt to be used as the metat-
able for instances of Account. It then
adds three methods to the prototype:
one for creating instances, one for
making deposits, and one for retriev-
ing the account’s balance. Finally, it
returns the prototype as the result of
this module.

Assuming the module is in the file
Account.lua, the following lines ex-
ercise the code

Account = require “Account”
acc = Account:new()
acc:deposit(1000)
print(acc:balance()) -->
1000	

First, the code requires the mod-
ule, then it creates an account; acc
will be an empty table with mt as its
metatable. De-sugared, the next line
reads as acc.deposit(acc,1000).
The table acc does not have a depos-
it field, so Lua delegates that access
to the table in the metatable’s __in-
dex field. The result of the access is
the function Account.deposit. Lua
then calls that function, passing acc
as the first argument (self) and 1000
as the second argument (amount). In-
side the function, Lua will again del-
egate the access self.bal to the pro-
totype because acc does not yet have
a field bal. In subsequent calls to bal-
ance, Lua will find a field bal in the
table acc and use that value. Distinct
accounts thus have separate balances
but share all methods.

The access to a prototype in the
metatable’s __index is a regular
access, meaning prototypes can be
chained. As an example, suppose the
programmer adds the following lines
to the previous example

Object = {name = “no name”}
setmetatable(Account,
 { _ _ index = Object})

When Lua evaluates acc.name,
the table acc does not have a name
key, so Lua tries the access in its pro-
totype, Account. That table also does
not have that key, so Lua goes to Ac-
count’s prototype, the table Object,
where it finally finds a name field.

between a new vector and mt. Next,
the code defines the metamethod
mt.__add to implement the addition
operator for vectors. The code then
creates two vectors, A and B, and adds
them to create a new vector C. When
Lua tries to evaluate A+B, it does not
know how to add tables and so checks
for an __add entry in A’s metatable.
Given that it finds that entry, Lua calls
the function stored there—the meta-
method—passing the original oper-
ands A and B as arguments.

The metamethod for the indexing
operator [] offers a form of delega-
tion in Lua. Lua calls this metamethod,
named __index, whenever it tries
to retrieve the value of an absent key
from a table. (For userdata, Lua calls
that metamethod for all keys.) For
the indexing operation, Lua allows
the metamethod to be a function or a
table. When __index is a table, Lua
delegates to that table all access for an
index that is absent in the original ta-
ble, as illustrated by this code fragment

Proto = {x = 0, y = 0}
obj = {x = 10}
mt = { __index = Proto}
setmetatable(obj, mt)
print(obj.x) --> 10
print(obj.y) --> 0

In the second call to print, Lua
cannot find the key "y" in obj and so
delegates the access to Proto. In the
first print, as obj has a field "x", the
access is not delegated.

With tables, functions, and del-
egation, we have almost all we need
for the second tier, which is based on

Figure 5. A simple prototype-based design in Lua.

local Account = {bal = 0}
local mt = {__index = Account}

function Account:new ()
 local obj = {}
 setmetatable(obj, mt)
 return obj
end

function Account:deposit (amount)
 self.bal = self.bal + amount
end
function Account:balance ()
 return self.bal
end

return Account

NOVEMBER 2018 | VOL. 61 | NO. 11 | COMMUNICATIONS OF THE ACM 121

contributed articles

whose only argument is the error ob-
ject. The function error also appears
in the C API as a regular function de-
spite the fact that it never returns.

Both lua _ pcall and lua _ er-
ror are reflected into Lua via the stan-
dard library. In languages that support
try–catch, typical exception-han-
dling code looks like this

try {
 <<protected code>>
}
catch (errobj) {
 <<exception handling>>
}

The equivalent code in Lua is like this

local ok, errobj =
pcall(function ()
 <<protected code>>
end)

if not ok then
 <<exception handling>>
end

In this translation, anonymous
functions with proper lexical scoping
play a central role. Except for state-
ments that invoke escape continua-
tions (such as break and return),
everything else can be written inside
the protected code as if written in the
regular code.

The use of pcall for exception
handling has pros and cons similar to
those for modules. On the one hand,
the code may not look as elegant as in
other languages that support the tra-
ditional try. On the other hand, it has
a clear semantics. In particular, ques-
tions like “What happens with excep-
tions inside the catch clause?” have
an obvious answer. Moreover, it has a
clear and easy integration with the C
API; it is exposed through conventional

The programmer can keep the bal-
ances private by storing them outside
the object table, as shown in Figure
6. The key difference between this ver-
sion and the one in Figure 5 is the use
of bal[self] instead of self.bal to
denote the balance of an account. The
table bal is what we call a dual table.
The call to setmetatable in the sec-
ond line causes this table to have weak
keys, thus allowing an account to be
collected when there are no other ref-
erences to it in the program. The fact
that bal is local to the module ensures
no code outside that module can see
or tamper with an account’s balance, a
technique that is handy whenever one
needs a private field in a structure.

An evaluation of Lua’s support for
object-oriented programming is not
very different from the evaluation of
the other mechanisms we have dis-
cussed so far. On the one hand, object-
oriented features in Lua are not as
easy to use as in other languages that
offer specific constructs for the task.
In particular, the colon syntax can be
somewhat confusing, mainly for pro-
grammers who are new to Lua but have
some experience with another object-
oriented language. Lua needs that syn-
tax because of its economy of concepts
that avoids introducing the concept of
method when the existing concept of
function will suffice.

On the other hand, the semantics
of objects in Lua is simple and clear.
Also, the implementation of objects in

Lua is flexible. Because method selec-
tion and the variable self are inde-
pendent, Lua does not need additional
mechanisms to call methods from
other classes (such as “super”). Final-
ly, this design is friendly to the C API.
All it needs is basic manipulation of ta-
bles and functions, plus the standard
function setmetatable. Lua pro-
grammers can implement prototypes
in Lua and create userdata instances in
C, create prototypes in C and instanc-
es in Lua, and define prototypes with
some methods implemented in Lua
and others in C. All these pieces work
together seamlessly.

Exception handling. Exception
handling in Lua is another mecha-
nism that relies on the flexibility of
functions. Several languages offer a
try–catch construction for excep-
tion handling; any exception in the
code inside a try clause jumps to
a corresponding catch clause. Lua
does not offer such a construction,
mainly because of the C API.

More often than not, exceptions in
a script are handled by the host appli-
cation. A syntactic construction like
try–catch is not easily mapped into
an API with a foreign language. In-
stead, the C API packs exception-han-
dling functionality into the higher-or-
der function lua _ pcall (“protected
call”) we discussed when we visited
the C API earlier in this article. The
function pcall receives a function as
an argument and calls that function.
If the provided function terminates
without errors, pcall returns true;
otherwise, pcall catches the error
and returns false plus an error object,
which is any value given when the er-
ror was raised. Regardless of how
pcall is implemented, it is exposed
in the C API as a conventional func-
tion. The C API also offers a function
to raise errors, called lua _ error,

Figure 6. Accounts with private fields.

local bal = {}
setmetatable(bal, {__mode = “k”})

local Account = {}
local mt = {__index = Account}

function Account:new ()
 local obj = {}
 setmetatable(obj, mt)
 bal[obj] = 0
 return obj
end

function Account:deposit (amount)
 bal[self] = bal[self] + amount
end

function Account:balance ()
 return bal[self]
end

return Account

Figure 7. A simple example of a coroutine in Lua.

co = coroutine.create(function (x)
 print(x) --> 10
 x = coroutine.yield(20)
 print(x) --> 30
 return 40
end)

print(coroutine.resume(co, 10)) --> 20
print(coroutine.resume(co, 30)) --> 40

122 COMMUNICATIONS OF THE ACM | NOVEMBER 2018 | VOL. 61 | NO. 11

contributed articles

the coroutine again, making yield re-
turn 30, the value given to resume. The
coroutine then prints 30 and finishes,
causing the corresponding call to re-
sume to return 40, the value returned
by the coroutine.

Coroutines are not as widely used in
Lua as tables and functions. Neverthe-
less, when required, coroutines play a
pivotal role, due to their capacity for
turning the control flow of a program
inside out.

An important use of coroutines in
Lua is for implementing cooperative
multithreading. Games typically ex-
ploit this feature, because they need
to be in control to remain responsive
at interactive rates. Each character
or object in a game has its own script
running in a separate coroutine. Each
script is typically a loop that, at each it-
eration, updates the character’s state
and then yields. A simple scheduler
resumes all live coroutines at each
game update.

Another use of coroutines is in tack-
ling the “who-is-the-boss” problem. A
typical issue with scripting languages
is the decision whether to embed or
to extend. When programmers embed
a scripting language, the host is the
boss, that is, the host program, written
in the foreign language, has the main
loop of the program and calls func-
tions written in the scripting language
for particular tasks. When program-
mers extend a scripting language, the
script is the boss; programmers then
write libraries for it in the foreign lan-
guage, and the main loop of the pro-
gram is in the script.

Embedding and extending both
have advantages and disadvantages,
and the Lua–C API supports them
equally. However, external code can be
less forgiving. Suppose a large, mono-
lithic application contains some use-
ful functionality for a particular script.
The programmer wants to write the
script as the boss, calling functions
from that external application. How-
ever, the application itself assumes it is
the boss. Moreover, it may be difficult
to break the application into individual
functions and offer them as a coherent
library to the script.

Coroutines offer a simpler design.
The programmer modifies the ap-
plication to create a coroutine with
the script when it starts; every time

functions; and Lua programs can raise
errors in Lua and catch them in C and
raise errors in C and catch them in Lua.

Coroutines
Like associative arrays and first-class
functions, coroutines are a well-estab-
lished concept in programming. How-
ever, unlike tables and first-class func-
tions, there are significant variations
in how different communities imple-
ment coroutines.2 Several of these vari-
ations are not equivalent, in the sense
that a programmer cannot implement
one on top of the other.

Coroutines in Lua are like coopera-
tive multithreading and have the fol-
lowing distinguishing properties:

First-class values. Lua programmers
can create coroutines anywhere, store
them in variables, pass them as param-
eters, and return them as results. More
important, they can resume coroutines
anywhere;

Suspend execution. They can sus-
pend their execution from within nest-
ed functions. Each coroutine has its
own call stack, with a semantics simi-
lar to collaborative multithreading.
The entire stack is preserved when the
coroutine yields;

Asymmetric. Symmetric coroutines
offer a single control-transfer opera-
tion that transfers control from the
running coroutine to another given
coroutine. Asymmetric coroutines, on
the other hand, offer two control-trans-
fer operations, resume and yield,
that work like a call–return pair; and

Equivalent to one-shot continuations.2
Despite this equivalence, coroutines
offer one-shot continuations in a for-
mat that is more natural for a proce-
dural language due to its similarity to
multithreading.

Figure 7 illustrates the life cycle of a
coroutine in Lua. The program prints
10, 20, 30, and 40, in that order. It starts
by creating a coroutine co, giving an
anonymous function as its body. That
operation returns only a handle to the
new coroutine, without running it. The
program then resumes the coroutine
for the first time, starting the execution
of its body. The parameter x receives
the argument given to resume, and the
program prints 10. The coroutine then
yields, causing the call to resume to
return the value 20, the argument given
to yield. The program then resumes

In the case
of modules,
tables provide
name spaces,
lexical scoping
provides
encapsulation,
and first-class
functions allow
exportation
of functions.

NOVEMBER 2018 | VOL. 61 | NO. 11 | COMMUNICATIONS OF THE ACM 123

contributed articles

ing of what they are doing, as most
constructions are explicit in the code.
This explicitness also allows such
deeper understanding. We trust this
is a blessing, not a curse. 	

References
1.	 Cazzola, W. and Olivares, D.M. Gradually learning

programming supported by a growable programming
language. IEEE Transactions on Emerging Topics in
Computing 4, 3 (July 2016), 404–415.

2.	 de Moura, A.L and Ierusalimschy, R. Revisiting
coroutines. ACM Transactions on Programming
Languages and Systems 31, 2 (Feb. 2009), 6.1–6.31.

3.	 Gamasutra. Game Developer magazine’s 2011 Front
Line Award, Jan. 13, 2012; https://www.gamasutra.
com/view/news/129084/

4.	 Hayes, B. Ephemerons: A new finalization mechanism.
In Proceedings of the 12th ACM SIGPLAN Conference
on Object-Oriented Programming, Systems,
Languages, and Applications (Atlanta, GA, Oct. 5–9).
ACM, New York, 1997, 176–183.

5.	 Ierusalimschy, R. Programming with multiple
paradigms in Lua. In Proceedings of the 18th
International Workshop on Functional and (Constraint)
Logic Programming, LNCS, Volume 5979. S. Escobar,
Ed. (Brasilia, Brazil, June 28). Springer, Heidelberg,
Germany, 2009, 5–13.

6.	 Ierusalimschy, R., de Figueiredo, L.H., and Celes, W.
Lua—An extensible extension language. Software:
Practice and Experience 26, 6 (June 1996), 635–652.

7.	 Ierusalimschy, R., de Figueiredo, L.H., and Celes, W.
The evolution of Lua. In Proceedings of the Third ACM
SIGPLAN Conference on History of Programming
Languages (San Diego, CA, June 9–10). ACM Press,
New York, 2007, 2.1–2.26.

8.	 Ierusalimschy, R., de Figueiredo, L.H., and Celes,
W. Passing a language through the eye of a needle.
Commun. ACM 54, 7 (July 2011), 38–43.

9.	 International Organization for Standardization.
ISO 2000. International Standard: Programming
Languages, C. ISO/IEC9899: 1999(E).

10.	 Jones, R., Hosking, A., and Moss, E. The Garbage
Collection Handbook. CRC Press, Boca Raton, FL, 2011.

11.	 Kats, L. and Visser, E. The Spoofax Language
Workbench: Rules for declarative specification of
languages and IDEs. In Proceedings of the ACM
International Conference on Object Oriented
Programming Systems Languages and Applications
(Reno/Tahoe, NV, Oct. 17–21). ACM Press, New York,
2010, 444–463.

12.	 The Python Software Foundation. The Python
Language Reference, 3.5 Edition. The Python Software
Foundation, 2015.

13.	 Sestoft, P. Programming Language Concepts, Second
Edition. Springer, Cham, Switzerland, 2017.

14.	 Wikipedia. List of applications using Lua; https://
en.wikipedia.org/w/index.php?title=List_of_
applications_using_Lua&oldid=795421653

Roberto Ierusalimschy (roberto@inf.puc-rio.br) is an
associate professor of computer science at PUC-Rio, the
Pontifical Catholic University of Rio de Janeiro, Brazil.

Luiz Henrique de Figueiredo (lhf@impa.br) is a
researcher at IMPA, the Institute for Pure and Applied
Mathematics in Rio de Janeiro, Brazil.

Waldemar Celes (celes@inf.puc-rio.br) is an associate
professor of computer science at PUC-Rio, the Pontifical
Catholic University of Rio de Janeiro, Brazil.

Copyright held by the authors.
Publication rights licensed to ACM. $15.00

the application needs an input, it re-
sumes that coroutine. That is the only
change the programmer needs to
make in the application. The script,
for its part, also looks like a regu-
lar program, except it yields when
it needs to send a command to the
application. The control flow of the
resulting program progresses as fol-
lows: The application starts, creates
the coroutine, does its own initializa-
tion, and then waits for input by re-
suming the coroutine. The coroutine
then starts running, does its own ini-
tialization, and performs its duties
until it needs some service from the
application. At this point, the script
yields with a request, the call to re-
sume made by the application re-
turns, and the application services
the given request. The application
then waits for the next request by re-
suming the script again.

Presentation of coroutines in
the C API is clearly more challeng-
ing than presentation of functions
and tables. C code can create and
resume coroutines without restric-
tions. In particular, resuming works
like a regular function call: It (re)
activates the given coroutine when
called and returns when the corou-
tine yields or ends. However, yield-
ing also poses a problem. Once a C
function yields, there is no way to
later return the control to that point
in the function. The API offers two
ways to circumvent this restriction:
The first is to yield in a tail position:
When the coroutine resumes, it goes
straight to the calling Lua function.
The second is to provide a continua-
tion function when yielding. In this
way, when the coroutine resumes,
the control goes to the continuation
function, which can finish the task
of the original function.

We can see again in the API the ad-
vantages of asymmetric coroutines for
a language like Lua. With symmetric
coroutines, all transfers would have
the problems that asymmetric corou-
tines have only when yielding. In our
experience, resumes from C are much
more common than yields.

Conclusion
Every design involves balancing con-
flicting goals. To address the conflicts,
designers need to prioritize their goals.

This is clearly true of the design of any
programming language.

Lua has a unique set of design goals
that prioritize simplicity, portability,
and embedding. The Lua core is based
on three well-known, proven con-
cepts—associative arrays, first-class
functions, and coroutines—all imple-
mented with no artificial restrictions.
On top of these components, Lua fol-
lows the motto “mechanisms instead
of policies,” meaning Lua’s design
aims to offer basic mechanisms to al-
low programmers to implement more
complex features. For instance, in the
case of modules, tables provide name
spaces, lexical scoping provides encap-
sulation, and first-class functions allow
exportation of functions. On top of that,
Lua adds only the function require to
search for and load modules.

Modularity in language design is
nothing new.11 For instance, it can
be used to clarify the construction
of a large application.1 However, Lua
uses modularity to keep its size small,
breaking down complex constructions
into existing mechanisms.

The motto “mechanisms instead of
policies” also makes for a flexible lan-
guage, sometimes too flexible. For in-
stance, the do-it-yourself approach to
classes and objects leads to prolifera-
tion of different, often incompatible,
systems, but is handy when a program-
mer needs to adapt Lua to the class
model of the host program.

Tables, functions, and coroutines as
used in Lua have shown great flexibility
over the years. Despite the language’s
continuing evolution, there has been
little demand from programmers to
change the basic mechanisms.

The lack of built-in complex con-
structions and minimalist standard
libraries (for portability and small
size) make Lua a language that is not
as good as other scripting languages
for writing “quick-and-dirty” pro-
grams. Many programs in Lua need
an initial phase for programmers to
set up the language, as a minimal in-
frastructure for object-oriented pro-
gramming. More often than not, Lua
is embedded in a host application.
Embedding demands planning and
the set-up of the language is typically
integrated with its embedding. Lua’s
economy of concepts demands from
programmers a deeper understand-

Watch the authors discuss
this work in the exclusive
Communications video.
https://cacm.acm.org/videos/
a-look-at-the-design-of-lua

