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build a new abstraction. Encapsu-
lation in the C language provides a 
good example of a policy. The ISO C 
specification offers no mechanism 
for modules or interfaces.9 Neverthe-
less, C programmers leverage existing 
mechanisms (such as file inclusion 
and external declarations) to achieve 
those abstractions. On top of such ba-
sic mechanisms provided by the C lan-
guage, policy adds several rules (such 
as “all global functions should have a 
prototype in a header file” and “header 
files should not define objects, only de-
clare them”). Many programmers do 
not know these rules (and the policy as 
a whole) are not part of the C language. 

Accordingly, in the design of Lua, 
we have replaced addition of many 
different features by creating instead 
only a few mechanisms that allow 
programmers to implement such fea-
tures themselves.6 The motto leads 
to a design that is economical in con-
cepts. Lua offers exactly one general 
mechanism for each major aspect of 
programming: tables for data; func-
tions for abstraction; and coroutines 
for control. On top of these building 
blocks, programmers implement sev-
eral other features, including modules, 
objects, and environments, with the 
aid of minimal additions (such as syn-
tactic sugar) to the language. Here, we 
look at how this motto has worked out 
in the design of Lua. 

Design Goals 
Like other scripting languages, Lua 
has dynamic types, dynamic data struc-
tures, garbage collection, and an eval-
like functionality. Consider Lua’s par-
ticular set of goals: 

L UA  IS  A  scripting language developed at the Pontifical 
Catholic University of Rio de Janeiro (PUC-Rio) that 
has come to be the leading scripting language for 
video games worldwide.3,7 It is also used extensively in 
embedded devices like set-top boxes and TVs and in 
other applications like Adobe Photoshop Lightroom 
and Wikipedia.14 Its first version was released in 1993. 
The current version, Lua 5.3, was released in 2015. 

Though mainly a procedural language, Lua lends 
itself to several other paradigms, including object-
oriented programming, functional programming, and 
data-driven programming.5 It also offers good support 
for data description, in the style of JavaScript and 
JSON. Data description was indeed one of our main 
motivations for creating Lua, some years before the 
appearance of XML and JavaScript. 

Our motto in the design of Lua has always been 
“mechanisms instead of policies.” By policy, we mean 
a methodical way of using existing mechanisms to 
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access global variables in a state, and 
perform other basic tasks. The stand-
alone Lua interpreter is a tiny applica-
tion written on top of the library. 

These goals have had a deep impact 
on our design of Lua. Portability re-
stricts what the standard libraries can 
offer to what is available in ISO C, in-
cluding date and time, file and string 
manipulation, and basic mathemati-
cal functions. Everything else must be 
provided by external libraries. Simplic-
ity and small size restrict the language 
as a whole. These are the goals behind 
the economy of concepts for the lan-
guage. Embeddability has a subtler 
influence. To improve embeddability, 
Lua favors mechanisms that can be 
represented naturally in the Lua-C API. 
For instance, Lua tries to avoid or re-
duce the use of special syntax for a new 
mechanism, as syntax is not accessible 
through an API. On the other hand, 
mechanisms exposed as functions are 
naturally mapped to the API. 

Following the motto “mechanisms 
instead of policies” has a clear impact on 
simplicity and small size. It also affects 
embeddability by breaking complex 
concepts into simpler ones that are 
easier to represent in the API. 

Lua supports eight data types: nil, 
boolean, number, string, userdata, 
table, function, and thread, which rep-
resents coroutines. The first five are 
no surprise. The last three give Lua 
its flavor and are the ones we discuss 
here. However, given the importance 

of embeddability in the design of Lua, 
we first briefly introduce the interface 
between Lua and its host language. 

The Lua–C API 
To illustrate the concept of embedding 
in Lua, consider a simple example of a 
C program using the Lua library. Take 
this tiny Lua script, stored in a file 

pi = 4 * math.atan(1) 

Figure 1 shows a C program that runs 
the script and prints the value of pi. 
The first task is to create a new state 
and populate it with the functions from 
the standard libraries (such as math.
atan). The program then calls luaL _
loadfile to load (precompile) the 
given source file into this state. In the 
absence of errors, this call produces a 
Lua function that is then executed by 
lua _ pcall. If either loadfile or 
pcall raises an error, it produces an 
error message that is printed to the 
terminal. Otherwise, the program gets 
the value of the global variable pi and 
prints its value. 

The data exchange among these API 
calls is done through an implicit stack 
in the Lua state. The call to luaL _
loadfile pushes on the stack either 
a function or an error message. The 
call to lua _ pcall pops the func-
tion from the stack and calls it. The 
call to lua _ getglobal pushes the 
value of the global variable. The call to 
lua _ tonumber projects the Lua val-
ue on top of the stack to a double. The 
stack ensures these values remain vis-
ible to Lua while being manipulated by 
the C code so they cannot be collected 
by Lua’s garbage collector. 

Besides the functions used in this 
simple example, the Lua–C API (or “C 
API” for short) offers functions for all 
kinds of manipulation of Lua values, 
including pushing C values (such as 
numbers and strings) onto the stack, 
calling functions defined by the script, 
and setting variables in the state. 

Tables 
“Table” is the Lua term for associa-
tive arrays, or “maps.” A table is just 
a collection of entries, which are pairs 
〈key, value〉. 

Tables are the sole data-structuring 
mechanism in Lua. Nowadays, 
maps are available in most scripting 

Simplicity. Lua aims to offer only a 
few powerful mechanisms that can ad-
dress several different needs, instead 
of myriad specific language constructs, 
each tailored for a specific need. The 
Lua reference manual is small, with 
approximately 100 pages covering the 
language, its standard libraries, and 
the API with C; 

Small size. The entire implementa-
tion of Lua consists of 25,000 lines of 
C code; the binary for 64-bit Linux has 
200k bytes. Being small is important 
for both portability, as Lua must fit into 
a system before running there, and em-
bedding, as it should not bloat the host 
application that embeds it; 

Portability. Lua is implemented in 
ISO C and runs in virtually any system 
with as little as 300k bytes of memory. 
Lua runs in all mainstream systems 
and also on mainframes, inside OS ker-
nels (such as the NetBSD kernel), and 
on “bare metal” (such as NodeMCU 
running on the ESP8266 microcon-
troller); and 

Embeddability. Lua was designed 
since its inception to interoperate with 
other languages, both by extending—
allowing Lua code to call functions 
written in a foreign language—and by 
embedding—allowing foreign code to 
call functions written in Lua.8 Lua is 
thus implemented not as a standalone 
program but as a library with a C API. 
This library exports functions that cre-
ate a new Lua state, load code into a 
state, call functions loaded into a state, 

Figure 1. A C program using the Lua library. 

#include <stdio.h>
#include “lauxlib.h”
#include “lualib.h”

int main (int argc, char **argv) {
  // create a new state
  lua_State *L = luaL_newstate();
  // load the standard libraries
  luaL_openlibs(L);
  // try to load the given file and then
  // call the resulting function
  if (luaL_loadfile(L, argv[1]) != LUA_OK ||
      lua_pcall(L, 0, 0, 0) != LUA_OK) {
    // some error occurred; print the error message
    fprintf(stderr, “lua: %s\n”, lua_tostring(L, -1));
  }
  else {  // code ran successfully
    lua_getglobal(L, “pi”);
    printf(“pi: %f\n”, lua_tonumber(L, -1));
  }
  lua_close(L);   // close the state
  return 0;
}
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An interesting property of this im-
plementation is that it gives sparse 
arrays for free. For instance, when a 
programmer creates a table with three 
entries at indices 5, 100, and 3421, Lua 
automatically stores them in the hash 
part, instead of creating a large array 
with thousands of empty slots. 

Lua also uses tables to implement 
weak references. In languages with 
garbage collection, a weak reference is 
a reference to an object that does not 
prevent its collection as garbage.10 In 
Lua, weak references are implemented 
in weak tables. A weak table is thus a 
table that does not prevent its contents 
from being collected. If a key or a value 
in an entry is collected, that entry is 
simply removed from the table; we dis-
cuss later how to signal that a table is 
weak. Weak tables in Lua also subsume 
ephemerons.4 

Weak tables seem to contradict the 
motto “mechanisms instead of poli-
cies” because weak reference is a more 
basic concept than weak table. Weak 
tables would then be a policy, a particu-
lar way of using weak references. How-
ever, given the role of tables in Lua, it 
is natural to use them to support weak 
references without introducing yet an-
other concept. 

Functions 
Lua supports first-class anonymous 
functions with lexical scoping, infor-
mally known as closures.13 Several non-
functional languages nowadays (such 
as Go, Swift, Python, and JavaScript) 
offer first-class functions. However, to 
our knowledge, none uses this mecha-
nism as pervasively as Lua. 

All functions in Lua are anonymous. 
This is not immediately clear in the 
standard syntax for defining a function 

function add (x, y)
  return x + y
end 

Nevertheless, this syntax is just syn-
tactic sugar for an assignment of an 
anonymous function to a variable 

add = function (x, y)
  return x + y
end 

Most dynamic languages offer some 
kind of eval function that evaluates a 

languages, as well as in several non-
scripting ones, but in Lua maps are 
ubiquitous. Indeed, Lua programmers 
use tables not only for all kinds of data 
structures (such as records, arrays, 
lists, sets, and sparse matrices) but 
also for higher-level constructs (such as 
modules, objects, and environments). 

Programmers implement records 
using tables whose indices are strings 
representing field names. Lua sup-
ports records with syntactic sugar, 
translating a field reference like t.x to 
a table-indexing operation t[“x”]. 

Lua offers constructors, expressions 
that create and initialize tables. The 
constructor {} creates an empty table. 
The constructor {x=10,y=20} creates 
a table with two entries, one mapping 
the string "x" to the integer 10, the 
other mapping "y" to 20. Program-
mers see this table as a record with 
fields "x" and "y". 

Programmers implement arrays 
with tables whose indices are positive 
integers. Constructors also support 
this usage. For example, the expression 
{10,20,30} creates a table with three 
entries, mapping 1 to 10, 2 to 20, and 3 
to 30. Programmers see the table as an 
array with three elements. 

Arrays have no special status in the 
semantics of Lua; they are just ordi-
nary tables. However, arrays pervade 
programming. Therefore, implemen-
tation of tables in Lua gives special 
attention to their use as arrays. The in-
ternal representation of a table in Lua 
has two parts: an array and a hash.7 If 
the array part has size N, all entries 
with integer keys between 1 and N are 
stored in the array part; all other en-
tries are stored in the hash part. The 
keys in the array part are implicit and 
do not need to be stored. The size N of 
the array part is computed dynamical-
ly, every time the table has to rehash 
as the largest power of two such that 
at least half the elements in the array 
part will be filled. A generic access 
(such as t[i]) first checks whether i 
is an integer in the range [1, N ]; this 
is the most common case and the one 
programmers expect to be fast. If so, 
the operation gets the value in the ar-
ray; otherwise, it accesses the hash. 
When accessing record fields (such 
as t.x) the Lua core knows the key is 
a string and so skips the array test, go-
ing directly to the hash. 

Lua offers exactly 
one general 
mechanism for 
each major aspect 
of programming: 
tables for data; 
functions for 
abstraction; and 
coroutines for 
control. 
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nisms in Lua, including modules, 
object-oriented programming, and 
exception handling. We now discuss 
some of them, emphasizing how they 
contribute to Lua’s design goals. 

Modules. The construction of mod-
ules in Lua is a nice example of the 
use of first-class functions and tables 
as a basis for other mechanisms. At 
runtime, a module in Lua is a regular 
table populated with functions, as well 
as possibly other values (such as con-
stants). Consider this Lua fragment 

print(math.sin(math.pi/6))
   --> 0.5

Abstractly, programmers read this 
code as calling the sin function from 
the standard math module, using the 
constant pi from that same module. 
Concretely, the language sees math as 
a variable (created when Lua loaded its 
standard libraries) containing a refer-
ence to a table. That table has an entry 
with the key "sin" containing the sine 
function and an entry "pi" with the 
value of π. 

Statically, a module is simply the 
chunk that creates its corresponding 
table. Figure 2 shows a standard idiom 
for defining a simple module in Lua. 
The code creates a table in the local 
variable M, populates the table with 
some functions, and returns that table. 
Recall that Lua loads any chunk as the 
body of an enclosing anonymous func-
tion; this is how one should read that 
code. The variable M is local to that 
enclosing function and the final state-
ment returns from that function. 

Once defined in a file mymodule.
lua, a programmer can use that mod-
ule with code like thisa

local vec = require “mymodule” 
print(vec.norm(vec.new(10, 10)))
   --> 14.142135623731 

In it, require is a regular func-
tion from the standard library; when 
the single argument to a function is a 
literal string, the code can omit the pa-
rentheses in the call. If the module is 
not already loaded, require searches 
for an appropriate source for the given 
name (such as by looking for files in a 
list of paths), then loads and runs that 
code, and finally returns what the code 
returns. In this example, require re-
turns the table M created by the chunk. 

Lua leverages tables, first-class func-
tions, and load to support modules. 
The only addition to the language is the 
function require. This economy is 
particularly relevant for an embedded 
language like Lua. Because require is 
a regular function, it cannot create lo-
cal variables in the caller’s scope. Thus, 
in the example using "mymodule", the 
programmer had to define explicitly 
the local variable vec. Yet this limita-
tion gives programmers the ability to 
give a local name to the module. 

On the one hand, the construction 
of modules in Lua is not as elegant 
as a dedicated language mechanism 
could be, with explicit import and ex-
port lists and other refinements, as in 
the “import machinery” in Python.12 
On the other hand, this construction 
has a clear semantics that requires no 

a	 To test these pieces of code interactively, remove 
the local from the variable initializations. In 
interactive mode, Lua loads each line as an in-
dependent chunk. A local variable is thus visible 
only in the line where it was defined.

piece of code produced at runtime. In-
stead of eval, Lua offers a load func-
tion that, given a piece of source code, 
returns a function equivalent to that 
code. We saw a variant of load in the C 
API in the form of luaL _ loadfile. 
Consider the following piece of code 

local id = 0 
function genid () 
  id = id + 1 
  return id 
end 

When one loads it, the function 
load returns an anonymous function 
equivalent to the following code 

function ()
  local id = 0
  function genid ()
    id = id + 1
    return id
  end
end

So, if a programmer loads Lua code 
stored in a string and then calls the re-
sulting function, the programmer gets 
the equivalent of eval. 

We use the term “chunk” to denote 
a piece of code fed to load (such as a 
source file). Chunks are the compila-
tion units of Lua. When a programmer 
uses Lua in interactive mode, the Read-
Eval-Print Loop (REPL) handles each 
input line as a separate chunk. 

The function load simplifies the 
semantics of Lua in two ways: First, un-
like eval, load is pure and total; it has 
no side effects and it always returns a 
value, either a function or an error mes-
sage; second, it eliminates the distinc-
tion between “global” code and “func-
tion” code, as in the previous chunk 
of code. The variable id, which in the 
original code appears outside any func-
tion, is seen by Lua as a local variable 
in the enclosing anonymous function 
representing the script. Through lexi-
cal scoping, id is visible to the func-
tion genid and preserves its value be-
tween successive calls to that function. 
Thus, id works like a static variable in 
C or a class variable in Java. 

Exploring Tables and Functions 
Despite their apparent simplicity—or 
because of it—tables and functions 
form a basis for several other mecha-

Figure 2. A simple module in Lua. 

local M = {}

function M.new (x, y)
  return {x = x, y = y}
end

function M.add (u, v)
  return M.new(u.x+v.x, u.y+v.y)
end

function M.norm (v)
  return math.sqrt(v.x^2 + v.y^2)
end

return M

Figure 3. A module in Lua using  
environments. 	

local sqrt = math.sqrt 
local _ENV = {}

function new (x, y) 
  return {x = x, y = y} 
end

function add (u, v) 
  return new(u.x+v.x, u.y+v.y) 
end

function norm (v) 
  return sqrt(v.x^2 + v.y^2) 
end

return _ENV 
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fines the module components directly 
as free variables; instead of M.norm, it 
uses only norm, which Lua translates 
to _ ENV.norm. The code ends the 
module with return _ ENV. 

This method for writing modules 
has two benefits: First, all external 
functions and modules must be ex-
plicitly imported right at the start; and 
second, a module cannot pollute the 
global space by mistake. 

Object-oriented programming. 
Support for object-oriented program-
ming in Lua follows the pattern we 
have been seeing in this article: It tries 
to build upon tables and functions, 
adding only the minimum necessary 
to the language. 

Lua uses a two-tier approach to 
object-oriented programming. The 
first is implemented by Lua and the 
second by programmers on top of the 
first one. The first tier is class-based. 
Both objects and classes are tables, 
and the relation “instance of” is dy-
namic. Userdata, which represents C 
values in Lua, can also play the role of 
objects. Classes are called metatables. 
In this first tier, a class can define only 
methods for the standard operators 
(such as addition, subtraction, and 
concatenation). These methods are 
called metamethods. 

Figure 4 illustrates how a program-
mer would use this basic mechanism 
to perform arithmetic on 2D vectors. 
The code starts with a table mt that 
would be the metatable for the vec-
tors. The code then defines a function 
newVector to create 2D vectors. Vec-
tors are tables with two fields, x and y. 
The standard function setmetatable 
establishes the “instance of” relation 

further explanation. It also has an inex-
pensive implementation. Finally, and 
also quite important, it has an easy in-
tegration with the C API: One can eas-
ily create modules in C; create mixed 
modules with some functions defined 
in Lua and others in C; and for C code 
call functions inside modules. The API 
needs no additional mechanisms to do 
these tasks; all it needs is the existing 
Lua mechanisms to manipulate tables 
and functions. 

Environments. Local variables in 
Lua follow a strict lexical scoping disci-
pline. A local variable can be accessed 
only by code that is lexically written in-
side its scope. Lexical scoping implies 
that local variables are one of the few 
constructions that do not cross the C 
API, as C code cannot be lexically in-
side Lua code. 

A program in Lua can be composed 
of multiple chunks (such as multiple 
modules) loaded independently. Lexi-
cal scoping implies that a module 
cannot create local variables for other 
chunks. Variables like math and re-
quire, created by the standard librar-
ies, should thus be created as global 
variables. However, using global vari-
ables in a large program can easily 
lead to overly complex code, entan-
gling apparently unrelated parts of a 
program. To circumvent this conflict, 
Lua does not have global variables 
built into the language. Instead, it 
offers a mechanism of environments 
that, by default, gives the equivalent 
of global variables. Nevertheless, as we 
show later in this article, environments 
allow other possibilities. 

Recall that any chunk of code in Lua 
is compiled as if inside an anonymous 
function. Environments add two sim-
ple rules to this translation: First, the 
enclosing anonymous function is com-
piled as if in the scope of a local vari-
able named _ ENV; and second, any 
free variable id in the chunk is trans-
lated to _ ENV.id. For example, Lua 
loads the chunk print(v) as if it was 
written like this 

local _ ENV = <<some given value>>
return function ()
   _ ENV.print( _ ENV.v)
end 

By default, load initializes _ ENV 
with a fixed table, called the global 

environment. All chunks thus share 
this same environment by default, giv-
ing the illusion of global variables; in 
the chunk just mentioned, both v and 
print refer to fields in that table and 
thus behave as global variables. Howev-
er, both load and the code being load-
ed can modify _ ENV to any other value. 
The _ ENV mechanism allows different 
scripts to have different environments, 
functions to be called with different en-
vironments, and other variations. 

The translation of free variables 
needs semantic information to deter-
mine whether a variable is free. Never-
theless, the translation itself is purely 
syntactical. In particular, _ ENV is a 
regular variable, needing no special 
treatment by the compiler. The pro-
grammer can assign new values to 
_ ENV or declare other variables with 
that name. As an example, consider 
this fragment 

do
  local _ ENV = {} 
  ...
end 

Inside the do block, all free vari-
ables refer to fields in the new table 
_ ENV. Outside the block, all free vari-
ables refer to the default environment. 

A more typical use of _ ENV is for 
writing modules. Figure 3 shows how 
to rewrite the simple module of Figure 
2 using environments. In the first line, 
where the code “imports” a function 
from the math module, the environ-
ment is still the default one. In the 
second line, the code sets the envi-
ronment to a new table that will rep-
resent the module. The code then de-

Figure 4. An example of metatables. 

local mt = {}

function newVector (x, y)
  local p = {x = x, y = y}
  setmetatable(p, mt)
  return p
end

function mt.__add (p1, p2)
  return newVector(p1.x + p2.x, p1.y + p2.y)
end

-- example of use
A = newVector(10, 20)
B = newVector(20, -40)
C = A + B
print(C.x, C.y)      --> 30    -20 
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prototypes. In it, programmers repre-
sent objects also by tables or userdata. 
Each object can have a prototype, from 
which it inherits methods and fields. 
The prototype of an object obj is the 
object stored in the __index field of 
the metatable of obj. One can then 
write obj.foo(x), and Lua will retrieve 
the method foo from the object’s pro-
totype, through delegation. 

However, if we stopped here, there 
would be a flaw in the support for 
object-oriented programming in Lua. 
After finding and calling the method 
in the object’s prototype, there would 
be no way for the method to access the 
original object, which is the intend-
ed receiver. Lua solves this problem 
through syntactic sugar. Lua translates 
a “method” definition like 

function Proto:foo (x)
   ...
end

to a function definition:

function Proto.foo (self, x)
   ...
end 

Likewise, Lua translates a “method” 
call obj:foo(x) to obj.foo(obj,x). 
When the programmer defines a 
“method”—a function using the colon 
syntax—Lua adds a hidden parameter 
self. When the programmer calls a 
“method” using the colon syntax, Lua 
provides the receiver as the argument to 
the self parameter. There is no need 
to add classes, objects, or methods to 
the language, merely syntactic sugar. 

Figure 5 illustrates these concepts. 
First the code creates a prototype, the 
table Account. The code then creates 
a table mt to be used as the metat-
able for instances of Account. It then 
adds three methods to the prototype: 
one for creating instances, one for 
making deposits, and one for retriev-
ing the account’s balance. Finally, it 
returns the prototype as the result of 
this module. 

Assuming the module is in the file 
Account.lua, the following lines ex-
ercise the code 

Account = require “Account” 
acc = Account:new() 
acc:deposit(1000) 
print(acc:balance()) --> 
1000	  

First, the code requires the mod-
ule, then it creates an account; acc 
will be an empty table with mt as its 
metatable. De-sugared, the next line 
reads as acc.deposit(acc,1000). 
The table acc does not have a depos-
it field, so Lua delegates that access 
to the table in the metatable’s __in-
dex field. The result of the access is 
the function Account.deposit. Lua 
then calls that function, passing acc 
as the first argument (self) and 1000 
as the second argument (amount). In-
side the function, Lua will again del-
egate the access self.bal to the pro-
totype because acc does not yet have 
a field bal. In subsequent calls to bal-
ance, Lua will find a field bal in the 
table acc and use that value. Distinct 
accounts thus have separate balances 
but share all methods. 

The access to a prototype in the 
metatable’s __index is a regular 
access, meaning prototypes can be 
chained. As an example, suppose the 
programmer adds the following lines 
to the previous example 

Object = {name = “no name”}
setmetatable(Account,
   { _ _ index = Object})

When Lua evaluates acc.name, 
the table acc does not have a name 
key, so Lua tries the access in its pro-
totype, Account. That table also does 
not have that key, so Lua goes to Ac-
count’s prototype, the table Object, 
where it finally finds a name field. 

between a new vector and mt. Next, 
the code defines the metamethod 
mt.__add to implement the addition 
operator for vectors. The code then 
creates two vectors, A and B, and adds 
them to create a new vector C. When 
Lua tries to evaluate A+B, it does not 
know how to add tables and so checks 
for an __add entry in A’s metatable. 
Given that it finds that entry, Lua calls 
the function stored there—the meta-
method—passing the original oper-
ands A and B as arguments. 

The metamethod for the indexing 
operator [] offers a form of delega-
tion in Lua. Lua calls this metamethod, 
named __index, whenever it tries 
to retrieve the value of an absent key 
from a table. (For userdata, Lua calls 
that metamethod for all keys.) For 
the indexing operation, Lua allows 
the metamethod to be a function or a 
table. When __index is a table, Lua 
delegates to that table all access for an 
index that is absent in the original ta-
ble, as illustrated by this code fragment 

Proto = {x = 0, y = 0}
obj = {x = 10}
mt = { __index = Proto}
setmetatable(obj, mt)
print(obj.x) --> 10
print(obj.y) --> 0 

In the second call to print, Lua 
cannot find the key "y" in obj and so 
delegates the access to Proto. In the 
first print, as obj has a field "x", the 
access is not delegated. 

With tables, functions, and del-
egation, we have almost all we need 
for the second tier, which is based on 

Figure 5. A simple prototype-based design in Lua. 

local Account = {bal = 0}
local mt = {__index = Account}

function Account:new ()
  local obj = {}
  setmetatable(obj, mt)
  return obj
end

function Account:deposit (amount)
  self.bal = self.bal + amount
end
function Account:balance ()
  return self.bal
end

return Account 
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whose only argument is the error ob-
ject. The function error also appears 
in the C API as a regular function de-
spite the fact that it never returns. 

Both lua _ pcall and lua _ er-
ror are reflected into Lua via the stan-
dard library. In languages that support 
try–catch, typical exception-han-
dling code looks like this 

try {
  <<protected code>> 
} 
catch (errobj) {
  <<exception handling>>
}

The equivalent code in Lua is like this 

local ok, errobj = 
pcall(function ()
  <<protected code>>
end) 

if not ok then
  <<exception handling>>
end 

In this translation, anonymous 
functions with proper lexical scoping 
play a central role. Except for state-
ments that invoke escape continua-
tions (such as break and return), 
everything else can be written inside 
the protected code as if written in the 
regular code.  

The use of pcall for exception 
handling has pros and cons similar to 
those for modules. On the one hand, 
the code may not look as elegant as in 
other languages that support the tra-
ditional try. On the other hand, it has 
a clear semantics. In particular, ques-
tions like “What happens with excep-
tions inside the catch clause?” have 
an obvious answer. Moreover, it has a 
clear and easy integration with the C 
API; it is exposed through conventional 

The programmer can keep the bal-
ances private by storing them outside 
the object table, as shown in Figure 
6. The key difference between this ver-
sion and the one in Figure 5 is the use 
of bal[self] instead of self.bal to 
denote the balance of an account. The 
table bal is what we call a dual table. 
The call to setmetatable in the sec-
ond line causes this table to have weak 
keys, thus allowing an account to be 
collected when there are no other ref-
erences to it in the program. The fact 
that bal is local to the module ensures 
no code outside that module can see 
or tamper with an account’s balance, a 
technique that is handy whenever one 
needs a private field in a structure. 

An evaluation of Lua’s support for 
object-oriented programming is not 
very different from the evaluation of 
the other mechanisms we have dis-
cussed so far. On the one hand, object-
oriented features in Lua are not as 
easy to use as in other languages that 
offer specific constructs for the task. 
In particular, the colon syntax can be 
somewhat confusing, mainly for pro-
grammers who are new to Lua but have 
some experience with another object-
oriented language. Lua needs that syn-
tax because of its economy of concepts 
that avoids introducing the concept of 
method when the existing concept of 
function will suffice. 

On the other hand, the semantics 
of objects in Lua is simple and clear. 
Also, the implementation of objects in 

Lua is flexible. Because method selec-
tion and the variable self are inde-
pendent, Lua does not need additional 
mechanisms to call methods from 
other classes (such as “super”). Final-
ly, this design is friendly to the C API. 
All it needs is basic manipulation of ta-
bles and functions, plus the standard 
function setmetatable. Lua pro-
grammers can implement prototypes 
in Lua and create userdata instances in 
C, create prototypes in C and instanc-
es in Lua, and define prototypes with 
some methods implemented in Lua 
and others in C. All these pieces work 
together seamlessly. 

Exception handling. Exception 
handling in Lua is another mecha-
nism that relies on the flexibility of 
functions. Several languages offer a 
try–catch construction for excep-
tion handling; any exception in the 
code inside a try clause jumps to 
a corresponding catch clause. Lua 
does not offer such a construction, 
mainly because of the C API. 

More often than not, exceptions in 
a script are handled by the host appli-
cation. A syntactic construction like 
try–catch is not easily mapped into 
an API with a foreign language. In-
stead, the C API packs exception-han-
dling functionality into the higher-or-
der function lua _ pcall (“protected 
call”) we discussed when we visited 
the C API earlier in this article. The 
function pcall receives a function as 
an argument and calls that function. 
If the provided function terminates 
without errors, pcall returns true; 
otherwise, pcall catches the error 
and returns false plus an error object, 
which is any value given when the er-
ror was raised. Regardless of how 
pcall is implemented, it is exposed 
in the C API as a conventional func-
tion. The C API also offers a function 
to raise errors, called lua _ error, 

Figure 6. Accounts with private fields. 

local bal = {}
setmetatable(bal, {__mode = “k”})

local Account = {}
local mt = {__index = Account}

function Account:new ()
  local obj = {}
  setmetatable(obj, mt)
  bal[obj] = 0
  return obj
end

function Account:deposit (amount)
  bal[self] = bal[self] + amount 
end

function Account:balance ()
  return bal[self]
end

return Account 

Figure 7. A simple example of a coroutine in Lua. 

co = coroutine.create(function (x)
    print(x)   --> 10
    x = coroutine.yield(20)
    print(x)   --> 30
    return 40
end)

print(coroutine.resume(co, 10))  --> 20
print(coroutine.resume(co, 30))  --> 40
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the coroutine again, making yield re-
turn 30, the value given to resume. The 
coroutine then prints 30 and finishes, 
causing the corresponding call to re-
sume to return 40, the value returned 
by the coroutine. 

Coroutines are not as widely used in 
Lua as tables and functions. Neverthe-
less, when required, coroutines play a 
pivotal role, due to their capacity for 
turning the control flow of a program 
inside out. 

An important use of coroutines in 
Lua is for implementing cooperative 
multithreading. Games typically ex-
ploit this feature, because they need 
to be in control to remain responsive 
at interactive rates. Each character 
or object in a game has its own script 
running in a separate coroutine. Each 
script is typically a loop that, at each it-
eration, updates the character’s state 
and then yields. A simple scheduler 
resumes all live coroutines at each 
game update. 

Another use of coroutines is in tack-
ling the “who-is-the-boss” problem. A 
typical issue with scripting languages 
is the decision whether to embed or 
to extend. When programmers embed 
a scripting language, the host is the 
boss, that is, the host program, written 
in the foreign language, has the main 
loop of the program and calls func-
tions written in the scripting language 
for particular tasks. When program-
mers extend a scripting language, the 
script is the boss; programmers then 
write libraries for it in the foreign lan-
guage, and the main loop of the pro-
gram is in the script. 

Embedding and extending both 
have advantages and disadvantages, 
and the Lua–C API supports them 
equally. However, external code can be 
less forgiving. Suppose a large, mono-
lithic application contains some use-
ful functionality for a particular script. 
The programmer wants to write the 
script as the boss, calling functions 
from that external application. How-
ever, the application itself assumes it is 
the boss. Moreover, it may be difficult 
to break the application into individual 
functions and offer them as a coherent 
library to the script. 

Coroutines offer a simpler design. 
The programmer modifies the ap-
plication to create a coroutine with 
the script when it starts; every time 

functions; and Lua programs can raise 
errors in Lua and catch them in C and 
raise errors in C and catch them in Lua. 

Coroutines 
Like associative arrays and first-class 
functions, coroutines are a well-estab-
lished concept in programming. How-
ever, unlike tables and first-class func-
tions, there are significant variations 
in how different communities imple-
ment coroutines.2 Several of these vari-
ations are not equivalent, in the sense 
that a programmer cannot implement 
one on top of the other. 

Coroutines in Lua are like coopera-
tive multithreading and have the fol-
lowing distinguishing properties: 

First-class values. Lua programmers 
can create coroutines anywhere, store 
them in variables, pass them as param-
eters, and return them as results. More 
important, they can resume coroutines 
anywhere; 

Suspend execution. They can sus-
pend their execution from within nest-
ed functions. Each coroutine has its 
own call stack, with a semantics simi-
lar to collaborative multithreading. 
The entire stack is preserved when the 
coroutine yields; 

Asymmetric. Symmetric coroutines 
offer a single control-transfer opera-
tion that transfers control from the 
running coroutine to another given 
coroutine. Asymmetric coroutines, on 
the other hand, offer two control-trans-
fer operations, resume and yield, 
that work like a call–return pair; and 

Equivalent to one-shot continuations.2 
Despite this equivalence, coroutines 
offer one-shot continuations in a for-
mat that is more natural for a proce-
dural language due to its similarity to 
multithreading. 

Figure 7 illustrates the life cycle of a 
coroutine in Lua. The program prints 
10, 20, 30, and 40, in that order. It starts 
by creating a coroutine co, giving an 
anonymous function as its body. That 
operation returns only a handle to the 
new coroutine, without running it. The 
program then resumes the coroutine 
for the first time, starting the execution 
of its body. The parameter x receives 
the argument given to resume, and the 
program prints 10. The coroutine then 
yields, causing the call to resume to 
return the value 20, the argument given 
to yield. The program then resumes 

In the case  
of modules,  
tables provide  
name spaces, 
lexical scoping 
provides 
encapsulation,  
and first-class 
functions allow 
exportation  
of functions. 
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ing of what they are doing, as most 
constructions are explicit in the code. 
This explicitness also allows such 
deeper understanding. We trust this 
is a blessing, not a curse. 	
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the application needs an input, it re-
sumes that coroutine. That is the only 
change the programmer needs to 
make in the application. The script, 
for its part, also looks like a regu-
lar program, except it yields when 
it needs to send a command to the 
application. The control flow of the 
resulting program progresses as fol-
lows: The application starts, creates 
the coroutine, does its own initializa-
tion, and then waits for input by re-
suming the coroutine. The coroutine 
then starts running, does its own ini-
tialization, and performs its duties 
until it needs some service from the 
application. At this point, the script 
yields with a request, the call to re-
sume made by the application re-
turns, and the application services 
the given request. The application 
then waits for the next request by re-
suming the script again. 

Presentation of coroutines in 
the C API is clearly more challeng-
ing than presentation of functions 
and tables. C code can create and 
resume coroutines without restric-
tions. In particular, resuming works 
like a regular function call: It (re)
activates the given coroutine when 
called and returns when the corou-
tine yields or ends. However, yield-
ing also poses a problem. Once a C 
function yields, there is no way to 
later return the control to that point 
in the function. The API offers two 
ways to circumvent this restriction: 
The first is to yield in a tail position: 
When the coroutine resumes, it goes 
straight to the calling Lua function. 
The second is to provide a continua-
tion function when yielding. In this 
way, when the coroutine resumes, 
the control goes to the continuation 
function, which can finish the task 
of the original function. 

We can see again in the API the ad-
vantages of asymmetric coroutines for 
a language like Lua. With symmetric 
coroutines, all transfers would have 
the problems that asymmetric corou-
tines have only when yielding. In our 
experience, resumes from C are much 
more common than yields. 

Conclusion 
Every design involves balancing con-
flicting goals. To address the conflicts, 
designers need to prioritize their goals. 

This is clearly true of the design of any 
programming language. 

Lua has a unique set of design goals 
that prioritize simplicity, portability, 
and embedding. The Lua core is based 
on three well-known, proven con-
cepts—associative arrays, first-class 
functions, and coroutines—all imple-
mented with no artificial restrictions. 
On top of these components, Lua fol-
lows the motto “mechanisms instead 
of policies,” meaning Lua’s design 
aims to offer basic mechanisms to al-
low programmers to implement more 
complex features. For instance, in the 
case of modules, tables provide name 
spaces, lexical scoping provides encap-
sulation, and first-class functions allow 
exportation of functions. On top of that, 
Lua adds only the function require to 
search for and load modules. 

Modularity in language design is 
nothing new.11 For instance, it can 
be used to clarify the construction 
of a large application.1 However, Lua 
uses modularity to keep its size small, 
breaking down complex constructions 
into existing mechanisms. 

The motto “mechanisms instead of 
policies” also makes for a flexible lan-
guage, sometimes too flexible. For in-
stance, the do-it-yourself approach to 
classes and objects leads to prolifera-
tion of different, often incompatible, 
systems, but is handy when a program-
mer needs to adapt Lua to the class 
model of the host program. 

Tables, functions, and coroutines as 
used in Lua have shown great flexibility 
over the years. Despite the language’s 
continuing evolution, there has been 
little demand from programmers to 
change the basic mechanisms. 

The lack of built-in complex con-
structions and minimalist standard 
libraries (for portability and small 
size) make Lua a language that is not 
as good as other scripting languages 
for writing “quick-and-dirty” pro-
grams. Many programs in Lua need 
an initial phase for programmers to 
set up the language, as a minimal in-
frastructure for object-oriented pro-
gramming. More often than not, Lua 
is embedded in a host application. 
Embedding demands planning and 
the set-up of the language is typically 
integrated with its embedding. Lua’s 
economy of concepts demands from 
programmers a deeper understand-
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