
30 ANOS

1987 Tecgraf: parceria PUC-Rio + Petrobras

1992 origem: duas linguagens ad hoc

construção ágil de
interfaces gráficas intera4vas

visualização customizada de
dados de perfis geológicos

1992 DEL: Data Entry Language

construção ágil de
interfaces gráficas interativas

1992 SOL: Simple Object Language

visualização customizada de
dados de perfis geológicos

1993 Lua 1.0

1993 Lua 1.0
function check (object, class)
local v = next(object,nil);
while v ~= nil do

if class[v] = nil then
print("unknown field: " .. v)

elseif type(object[v]) ~= class[v].type then
print("wrong type for field " .. v)

end
v = next(object,v);

end
v = next(class,nil);
while v ~= nil do

if object[v] = nil then
if class[v].default ~= nil then

object[v] = class[v].default
else print("field "..v.." not initialized")
end

end
v = next(class,v);

end
end

typetrilha = @{x = @{default = 0, type = "number"},
y = @{default = 0, type = "number"},
name = @{type = "string"}
}

function trilha (t) check(t,typetrilha) end
t1 = @trilha{ x = 4, name = "1"}
t2 = @trilha{ z = 4, name = "2"}
t3 = @trilha{ x = 4, name = 3}
t4 = @trilha{}

unknown field: z
wrong type for field name
field name not initialized

1993 sucesso no Tecgraf

1994 primeiro arLgo sobre Lua – SEMISH

1994 Lua 1.1

1995 Lua 2.1
function check (object, class)
local v = next(object,nil);
while v ~= nil do

if class[v] == nil then
print("unknown field: " .. v)

elseif type(object[v]) ~= class[v].type then
print("wrong type for field " .. v)

end
v = next(object,v);

end
v = next(class,nil);
while v ~= nil do

if object[v] == nil then
if class[v].default ~= nil then

object[v] = class[v].default
else print("field "..v.." not initialized")
end

end
v = next(class,v);

end
end

typetrilha = {x = {default = 0, type = "number"},
y = {default = 0, type = "number"},
name = {type = "string"}
}

function trilha (t) check(t,typetrilha) end
t1 = trilha{ x = 4, name = "1"}
t2 = trilha{ z = 4, name = "2"}
t3 = trilha{ x = 4, name = 3}
t4 = trilha{}

unknown field: z
wrong type for field name
field name not initialized

1995 página web www.inf.puc-rio.br/~roberto/lua.html

1996 primeiro artigo em periódico

1997 Prêmio Compaq

1996 Dr. Dobb’s Journal

1997 LucasArts
From: Bret Mogilefsky <mogul@lucasarts.com>
To: "'lua@icad.puc-rio.br'" <lua@icad.puc-rio.br>
Subject: LUA rocks! Ques4on, too.
Date: Thu, 9 Jan 1997 13:21:41 -0800

Hi there...
A]er reading the Dr. Dobbs ar4cle on Lua I was very eager to check it
out, and so far it has exceeded my expecta4ons in every way! It's
elegance and simplicity astound me. Congratula4ons on developing
such a well-thought out language.

Some background: I am working on an adventure game for the
LucasArts Entertainment Co., and I want to try replacing our older
adventure game scrip4ng language, SCUMM, with Lua.

1998 LucasArts

2010 Diehard GameFAN: Hall of Fame Nomination

“Grim Fandango was the first
game that shows Lua could not
only be used to make a good
game, but that it could be used
to make some of the best
games ever.”

1997 mailing list

1997 página web www.tecgraf.puc-rio.br/lua

1998 novo logo

graphic design by Alexandre Nakonechnyj

2000 Lua na imprensa

2000 O Globo

2004 Jornal do Brasil

2001 página web www.lua.org

2001 Simpósio Brasileiro de Linguagens de Programação

2002 nova licença – free so_ware

2003 Programming in Lua – 1ed

2004 LabLua

2005 Simpósio Brasileiro de Linguagens de Programação

2005 workshop na sede da Adobe

2006 Programming in Lua – 2ed

2007 ACM History of Programming Languages

Roberto Ierusalimschy

Luiz Henrique de Figueiredo

Waldemar Celes

2007 ACM History of Programming Languages

2008 Lua Programming Gems

2009 Masterminds of Programming

2011 Communications of the ACM

2011 Front Line Award Game Developers Magazine

2013 Programming in Lua – 3ed

2013 Prêmio Mérito Cienbfico

2015 Programando em Lua

2016 Programming in Lua – 4ed

2017 Inovanças – Criações à Brasileira

2017 Inovanças – Criações à Brasileira

video

2017 Inovanças – Criações à Brasileira

2018 Annual MeeLng of TeX Users Group

LuaTeX

2018 Communications of the ACM

114 COMMUNICATIONS OF THE ACM | NOVEMBER 2018 | VOL. 61 | NO. 11

contributed articles

build a new abstraction. Encapsu-
lation in the C language provides a
good example of a policy. The ISO C
specification offers no mechanism
for modules or interfaces.9 Neverthe-
less, C programmers leverage existing
mechanisms (such as file inclusion
and external declarations) to achieve
those abstractions. On top of such ba-
sic mechanisms provided by the C lan-
guage, policy adds several rules (such
as “all global functions should have a
prototype in a header file” and “header
files should not define objects, only de-
clare them”). Many programmers do
not know these rules (and the policy as
a whole) are not part of the C language.

Accordingly, in the design of Lua,
we have replaced addition of many
different features by creating instead
only a few mechanisms that allow
programmers to implement such fea-
tures themselves.6 The motto leads
to a design that is economical in con-
cepts. Lua offers exactly one general
mechanism for each major aspect of
programming: tables for data; func-
tions for abstraction; and coroutines
for control. On top of these building
blocks, programmers implement sev-
eral other features, including modules,
objects, and environments, with the
aid of minimal additions (such as syn-
tactic sugar) to the language. Here, we
look at how this motto has worked out
in the design of Lua.

Design Goals
Like other scripting languages, Lua
has dynamic types, dynamic data struc-
tures, garbage collection, and an eval-
like functionality. Consider Lua’s par-
ticular set of goals:

L UA IS A scripting language developed at the Pontifical
Catholic University of Rio de Janeiro (PUC-Rio) that
has come to be the leading scripting language for
video games worldwide.3,7 It is also used extensively in
embedded devices like set-top boxes and TVs and in
other applications like Adobe Photoshop Lightroom
and Wikipedia.14 Its first version was released in 1993.
The current version, Lua 5.3, was released in 2015.

Though mainly a procedural language, Lua lends
itself to several other paradigms, including object-
oriented programming, functional programming, and
data-driven programming.5 It also offers good support
for data description, in the style of JavaScript and
JSON. Data description was indeed one of our main
motivations for creating Lua, some years before the
appearance of XML and JavaScript.

Our motto in the design of Lua has always been
“mechanisms instead of policies.” By policy, we mean
a methodical way of using existing mechanisms to

A Look at
the Design
of Lua

DOI:10.1145/3186277

Simplicity, small size, portability,
and embeddability set Lua apart
from other scripting languages.

BY ROBERTO IERUSALIMSCHY, LUIZ HENRIQUE DE FIGUEIREDO,
AND WALDEMAR CELES

 key insights
 ! What sets Lua apart from other scripting

languages is its particular set of goals:
simplicity, small size, portability, and
embeddability.

 ! The entire implementation of Lua has
25,000 lines of C code; the binary for
64-bit Linux has 200k bytes.

 ! Since its inception, Lua was designed
to interoperate with other languages. I

M
A

G
E

 B
Y

 B
U

G
 F

I
S

H

video

2022 Medalha Pedro Ernesto

