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Part 1: Why Titan

● We started out interested in optimizing 
compilers and interpreters for Lua.

– To make our programs run faster
– So we can write high-level code without 

feeling guilty about performance (!)

● Different goal from Typed Lua. (See André’s 
talk)
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Because if it isn’t fast, we 
will find another way...

-- Caching globals
local sfind  = string.find
local smatch = string.match

-- Avoid table.insert
xs[#xs + 1] = blah

-- Avoid ipairs
for i = 1, #xs do
  local x = xs[i]
end
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Two ways to go fast

1)Optimizing Lua implementation (LuaJIT)

2)Use a different language (via the C API)
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1) Optimize Lua

● State of the art: just-in-time compilation

– Collect run-time information
– Speculatively specialize and optimize
– Fall back to interpreter if needed

● Lua is lucky to have LuaJIT, a best-in-class JIT.
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JIT problems

● Building a JIT is labor-intensive

– Fundamentally challenging
– Tooling is still an open problem
– (Hard to keep up with language evolution)

● Doesn’t optimize evenly 

– Up to 10x difference between compiled 
and interpreted code



7 / 25

2) Use a different language

● Perhaps we are trying to use Lua beyond 
what it was designed for?

● “Code the performance-sensitive parts in C”
● Original idea behind scripting languages
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Two languages, playing to 
their strengths

Scripting Language System Language

Dynamically Typed Statically Typed 

Interpreted Compiled

Glue Code Core Components

Flexible & Expressive Structured & Efficient
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C problems

● C-API is hard to use

– The one thing never in the Lua tutorials
– Stack-based
– Mismatched language semantics

● Only worth it for large chunks of code

– Rewriting existing code is a lot of work
– Runtime overhead in language boundary

(see various lua-to-C compilers)
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Part 2: What is Titan?

Titan is a new statically-typed system 
language, focused on performance. It is 
designed to seemlessly interoperate with 
Lua, and should feel familiar to Lua 
programmers.

(We are currently working on a proof-of-
concept implementation. Could still change 
significantly)
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A Glimpse of Titan

function sum_list(xs: {integer}) : integer
  local sum: integer = 0
  for i: integer = 1, #xs do
    sum = sum + xs[i]
  end
  return sum
end
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Titan is Similar to Lua

● Familiar syntax, looks like “Lua with Types”

– But isn’t Typed Lua – (See André’s talk)
● Semantics is close to a subset of Lua

function sum_list(xs: {integer}) : integer
  local sum: integer = 0
  for i: integer = 1, #xs do
    sum = sum + xs[i]
  end
  return sum
end
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Titan is Statically Typed

● Compiles into efficient code
● Compiler-checked documentation

function sum_list(xs: {integer}) : integer
  local sum: integer = 0
  for i: integer = 1, #xs do
    sum = sum + xs[i]
  end
  return sum
end
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Titan plays along with Lua

● Titan modules can be require-ed from Lua
● Titan can work with Lua datatypes
● Titan shares the Lua garbage collector.
● Calling Titan from Lua (and vice versa)

should be very cheap

function sum_list(xs: {integer}) : integer
  local sum: integer = 0
  for i: integer = 1, #xs do
    sum = sum + xs[i]
  end
  return sum
end
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Performance is a goal:
Restrictions

● Some things are errors in Titan, which helps 
us generate efficient code:

– If xs is not a list, throws an error
– If xs[i] is not an integer, throws an error
– ...

function sum_list(xs: {integer}) : integer
  local sum: integer = 0
  for i: integer = 1, #xs do
    sum = sum + xs[i]
  end
  return sum
end
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Performance is a goal:
New Abstractions

struct Point
  x: float
  y: float
end

function mid(p: Point, q: Point): Point
  local x: float = (p.x + q.x) / 2.0
  local y: float = (p.y + q.y) / 2.0
  return Point.new(x, y)
end
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foreign C [[
  double hypot(double, double);
]]

function pythagoras(): float
  return C.hypot(3.0, 4.0)
end

LuaJIT-style FFI

● Easy feature to add to a typed language
● Convenient way to create bindings
● Automatically converts inputs and outputs
● No C-API overhead (for Titan callers)
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Part 3: How to implement?

● How to be interoperable with Lua?

– How do we expose Titan code to Lua?
– How does Lua’s GC collect Titan’s garbage?

● How to be efficient?

– Choices in language semantics
– How do we generate code?
– How do we avoid C-API overhead?
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Exposing Titan code

● We compile Titan modules to an “so” file
(similar to a C module)

● Exported Titan functions use the C-API calling 
convention (receive a lua_State*, etc)

● From Lua’s point of view,
calling Titan is like calling C
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Sharing the GC

● Common issue when mixing two languages
● We aim to use Lua’s GC without modifications

● Titan datatypes

– Implemented as Lua arrays (not userdata)
– Similar to Python’s namedtuples

● Titan functions (local variables)

– Primitive values saved on C stack
– GC objects saved on Lua stack as well
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Being optimization-friendly

● Static typing
● More efficient primitive values
● Cheaper function calls

● Fail early

– Avoid expensive fallback paths
● Optimization-friendly data types

– structs instead of hash tables
– C types for FFI
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Code generation

● Compile to native code

– No interpreter overhead
● Reuse existing tooling

– Lots of options for compiling typed 
languages (GCC, Clang, LLVM, ...)

● Currently an AOT compiler targeting C
(to keep things simple)
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Bypassing the C-API

● The C-API is “dynamically typed”

– Operations can receive any Lua object
– Lots of error checking
– Programmer convenience (stack ajusting)

● Titan accesses the guts of the interpreter.

– Measurably faster, allows more 
specialization

– (Tradeoff is implementation challenge and 
tying each Titan version to a minor version 
of Lua)
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Example: Array write

#include "ltable.h"
#include "lvm.h"

{
    Table *t = local_xs;
    lua_Integer k = local_i;
    int v = 17;
    const TValue *vt = L->ci->func + 2;
    
    unsigned int actual_i = l_castS2U(k) - 1;
    unsigned int asize = t->sizearray;
    
    if (actual_i < asize) {
        TValue *slot = &t->array[actual_i];
        setivalue(slot, v);
    } else {
        TValue *slot = (TValue *) luaH_getint(t, k);
        TValue vk; setivalue(&vk, k);
        TValue vv; setivalue(&vv, v);
        luaV_finishset(L, vt, &vk, &vv, slot);
    }
}

Internal Lua headers

Table is saved in the Lua stack

Directly access the array
 part of the table

xs[i] = 17

No need to call the GC
 in the end
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Thank you!

● Follow our work in progress at 
https://www.github.com/titan-lang

● Email me at hgualandi@inf.puc-rio.br

https://www.github.com/titan-lang
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