
Titan: A System
Programming Language
made for Lua

Hugo Musso Gualandi, PUC-Rio
in collaboration with André Maidl, Fabio Mascarenhas,

Gabriel Ligneul and Hisham Muhammad

2 / 25

Part 1: Why Titan

● We started out interested in optimizing
compilers and interpreters for Lua.

– To make our programs run faster
– So we can write high-level code without

feeling guilty about performance (!)

● Different goal from Typed Lua. (See André’s
talk)

3 / 25

Because if it isn’t fast, we
will find another way...

-- Caching globals
local sfind = string.find
local smatch = string.match

-- Avoid table.insert
xs[#xs + 1] = blah

-- Avoid ipairs
for i = 1, #xs do
 local x = xs[i]
end

4 / 25

Two ways to go fast

1)Optimizing Lua implementation (LuaJIT)

2)Use a different language (via the C API)

5 / 25

1) Optimize Lua

● State of the art: just-in-time compilation

– Collect run-time information
– Speculatively specialize and optimize
– Fall back to interpreter if needed

● Lua is lucky to have LuaJIT, a best-in-class JIT.

6 / 25

JIT problems

● Building a JIT is labor-intensive

– Fundamentally challenging
– Tooling is still an open problem
– (Hard to keep up with language evolution)

● Doesn’t optimize evenly

– Up to 10x difference between compiled
and interpreted code

7 / 25

2) Use a different language

● Perhaps we are trying to use Lua beyond
what it was designed for?

● “Code the performance-sensitive parts in C”
● Original idea behind scripting languages

8 / 25

Two languages, playing to
their strengths

Scripting Language System Language

Dynamically Typed Statically Typed

Interpreted Compiled

Glue Code Core Components

Flexible & Expressive Structured & Efficient

9 / 25

C problems

● C-API is hard to use

– The one thing never in the Lua tutorials
– Stack-based
– Mismatched language semantics

● Only worth it for large chunks of code

– Rewriting existing code is a lot of work
– Runtime overhead in language boundary

(see various lua-to-C compilers)

10 / 25

Part 2: What is Titan?

Titan is a new statically-typed system
language, focused on performance. It is
designed to seemlessly interoperate with
Lua, and should feel familiar to Lua
programmers.

(We are currently working on a proof-of-
concept implementation. Could still change
significantly)

11 / 25

A Glimpse of Titan

function sum_list(xs: {integer}) : integer
 local sum: integer = 0
 for i: integer = 1, #xs do
 sum = sum + xs[i]
 end
 return sum
end

12 / 25

Titan is Similar to Lua

● Familiar syntax, looks like “Lua with Types”

– But isn’t Typed Lua – (See André’s talk)
● Semantics is close to a subset of Lua

function sum_list(xs: {integer}) : integer
 local sum: integer = 0
 for i: integer = 1, #xs do
 sum = sum + xs[i]
 end
 return sum
end

13 / 25

Titan is Statically Typed

● Compiles into efficient code
● Compiler-checked documentation

function sum_list(xs: {integer}) : integer
 local sum: integer = 0
 for i: integer = 1, #xs do
 sum = sum + xs[i]
 end
 return sum
end

14 / 25

Titan plays along with Lua

● Titan modules can be require-ed from Lua
● Titan can work with Lua datatypes
● Titan shares the Lua garbage collector.
● Calling Titan from Lua (and vice versa)

should be very cheap

function sum_list(xs: {integer}) : integer
 local sum: integer = 0
 for i: integer = 1, #xs do
 sum = sum + xs[i]
 end
 return sum
end

15 / 25

Performance is a goal:
Restrictions

● Some things are errors in Titan, which helps
us generate efficient code:

– If xs is not a list, throws an error
– If xs[i] is not an integer, throws an error
– ...

function sum_list(xs: {integer}) : integer
 local sum: integer = 0
 for i: integer = 1, #xs do
 sum = sum + xs[i]
 end
 return sum
end

16 / 25

Performance is a goal:
New Abstractions

struct Point
 x: float
 y: float
end

function mid(p: Point, q: Point): Point
 local x: float = (p.x + q.x) / 2.0
 local y: float = (p.y + q.y) / 2.0
 return Point.new(x, y)
end

17 / 25

foreign C [[
 double hypot(double, double);
]]

function pythagoras(): float
 return C.hypot(3.0, 4.0)
end

LuaJIT-style FFI

● Easy feature to add to a typed language
● Convenient way to create bindings
● Automatically converts inputs and outputs
● No C-API overhead (for Titan callers)

18 / 25

Part 3: How to implement?

● How to be interoperable with Lua?

– How do we expose Titan code to Lua?
– How does Lua’s GC collect Titan’s garbage?

● How to be efficient?

– Choices in language semantics
– How do we generate code?
– How do we avoid C-API overhead?

19 / 25

Exposing Titan code

● We compile Titan modules to an “so” file
(similar to a C module)

● Exported Titan functions use the C-API calling
convention (receive a lua_State*, etc)

● From Lua’s point of view,
calling Titan is like calling C

20 / 25

Sharing the GC

● Common issue when mixing two languages
● We aim to use Lua’s GC without modifications

● Titan datatypes

– Implemented as Lua arrays (not userdata)
– Similar to Python’s namedtuples

● Titan functions (local variables)

– Primitive values saved on C stack
– GC objects saved on Lua stack as well

21 / 25

Being optimization-friendly

● Static typing
● More efficient primitive values
● Cheaper function calls

● Fail early

– Avoid expensive fallback paths
● Optimization-friendly data types

– structs instead of hash tables
– C types for FFI

22 / 25

Code generation

● Compile to native code

– No interpreter overhead
● Reuse existing tooling

– Lots of options for compiling typed
languages (GCC, Clang, LLVM, ...)

● Currently an AOT compiler targeting C
(to keep things simple)

23 / 25

Bypassing the C-API

● The C-API is “dynamically typed”

– Operations can receive any Lua object
– Lots of error checking
– Programmer convenience (stack ajusting)

● Titan accesses the guts of the interpreter.

– Measurably faster, allows more
specialization

– (Tradeoff is implementation challenge and
tying each Titan version to a minor version
of Lua)

24 / 25

Example: Array write

#include "ltable.h"
#include "lvm.h"

{
 Table *t = local_xs;
 lua_Integer k = local_i;
 int v = 17;
 const TValue *vt = L->ci->func + 2;

 unsigned int actual_i = l_castS2U(k) - 1;
 unsigned int asize = t->sizearray;

 if (actual_i < asize) {
 TValue *slot = &t->array[actual_i];
 setivalue(slot, v);
 } else {
 TValue *slot = (TValue *) luaH_getint(t, k);
 TValue vk; setivalue(&vk, k);
 TValue vv; setivalue(&vv, v);
 luaV_finishset(L, vt, &vk, &vv, slot);
 }
}

Internal Lua headers

Table is saved in the Lua stack

Directly access the array
 part of the table

xs[i] = 17

No need to call the GC
 in the end

25 / 25

Thank you!

● Follow our work in progress at
https://www.github.com/titan-lang

● Email me at hgualandi@inf.puc-rio.br

https://www.github.com/titan-lang

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25

