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Starting Out

• Looking at new interaction models
• Particularly interested in what we could learn from

games

• Long-standing interest in extensible systems
• Very interested in Oberon about 11 years ago
• AutoCAD and AutoLISP seemed like an interesting

model of what deep-scripting could do for one

• Learned about Lua via the GC mailing list
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Evolution

• Shifting from a C++ bias to a C (Objective-C) bias
• C++ has grown frighteningly complex
• Difficult to build an extensibility story around C++

• Could we make Lua a peer to the C code?
• Already had Objective-C based plug-ins
• Implemented Lua support for the plug-in loader

• Implemented parallel namespace support for C-
based APIs and Lua-based APIs
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Evolution continued
• More pieces start getting implemented in Lua

• How far can we take this?
• To what extent do we need to maintain support for a pure C

path?
• Standard platform conventions such as plists give way to

Lua-based manifests
• Gradual absorbtion of “the Lua way”

• C code should be minimal and exists to handle performance
critical inner loops and interfacing to the OS

• As much of the interesting logic as possible goes into Lua
• Build “pretty” APIs using Lua
• Whenever possible test while coding
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Project Breakdown

• About 40% Lua
• 100,000 lines of Lua
• 150,000 lines of C, C++, Objective-C, etc.
• Excludes “third-party” libraries including those

from within Adobe
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But LOC is deceptive…

• Lua code includes some significant subsystems
• Namespace management
• Observations & Notifications
• View layout
• Database abstraction
• Most of the task system logic

• Virtually all of the actual UI logic
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Achievements

• Flexible event handling
• Flexible data handling
• Low project bug count
• Very low crash count
• QA engineer generating production code
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Mechanisms

• Objective-C bridging
• Multiple universes
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Objective-C Bridging
• Lots of bridges out there

• CocoaDev
• Steve Dekorte had one though it seems to have moved
• Many are more aggressive than ours

• Enabled by the availability of introspection data in the
Objective-C runtime
• This makes Lua to Objective-C calls easy
• Automatic extensions have to contend with Objective-C’s use

of “:” [ dict setValue: value forKey: key ]
• Not as easy to implement objects in Lua that are transparently

callable from Objective-C
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Objective-C Bridging (continued)
• Extension on our part to deal with naming and to allow for

greater parameter list flexibility:
• Objective-C: - (int) myMethod_L: lua_State* L { }
• Lua: obj:myMethod( 1, 2, 3 )

• Added support for property-style access in addition to
method-style access
• myObj.x
• myObj:x()
• Complicated on reads by the fact that at __index time, you

don’t know how the value will be used
• We’ve got a __methods metamethod patch to the LuaVM

• Primary Lesson: Languages with good introspection make it
easy to export APIs to Lua
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Multiple Universes: Prelude

• Started out by trying LuaThreads
• The mutex locks basically kill performance

• 25-50% speed hit in some tests
• Memory synchronization bites you even in the

absence of contention
• LuaThreads is unsafe with respect to some

function in the library such as ref manipulation
• So, we need more locks…

• Looked at doing things to reduce lock traffic
• Those all became scary in their complexity
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Multiple Universes: Solution

• Do processing in separate universes — i.e.,
independently opened Lua states

• Logic driving universes is written in C
• If doing it over again, it would probably be in Lua

• Communicate via a “transit universe” that is
subject to a mutex at the transit universe API level

Main Transit Worker
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Transit Universe
• Supports transfer of primitive Lua types

• Numbers
• Strings
• Booleans
• Light userdata

• Supports transfer of tables
• No logic to deal with DAGs

• Supports transfer of Objective-C objects
• No support for:

• Functions: Use dump & load
• Metatables
• Arbitrary userdata
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Transit Universe
• C-based API
• If it had a Lua-based API, it might look something like:

• transitUniverse.put( value ) -- returns a token that can be
transferred between universes via some other mechanism

• transitUniverse.get( token ) -- returns the value associated with
a token returned by transitUniverse.put

• transitUniverse.delete( token ) -- deletes the value associated
with the token in the transit universe



2005 Adobe Systems Incorporated. All Rights Reserved. 15

Challenges

• Garbage collection performance
• Garbage collection cycles
• Temporary states
• Lack of static type-checking
• Performance measurement
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Garbage Collection Performance
• GC pauses are disturbing when running animations

• Incremental collection smooths those out
• Heap allocation is slower than stack allocation

• Returning a rectangle struct on the stack in C is a lot cheaper than
allocating a rectangle object, returning it, and then collecting it

• For small structures, the solution is to work with them unpacked — i.e.,
pass x and y rather than a point
• myObject:offsetBy( x, y )
• myObject:offsetBy( point )

• Pass in destination storage as an optional parameter
• myObj:bounds( storage ) but also myObj:bounds()

• Careful allocation of temporaries at outer scopes
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Garbage Collection Cycles
• C points to Lua points to C points to Lua points to…
• Refs created via Lua have to be manually broken — i.e., they

create the moral equivalent of reference-counting cycles
• Worked with some really ugly hacks based on per-object

metatables
• Lua 5.1w5’s addition of environments for userdata has fixed all

this
• Store links to other Lua objects in the environment and let the Lua GC

trace them
• Be happy that Objective-C allows one to change the behavior on

retain and release calls for existing classes
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Temporary States
• Problem: Lots of C code doesn’t have a Lua state directly available

to it
• Solution: Maintain a pool of states for a universe (allocated via

lua_newthread) so that we can just grab one
• Problem: Cleaning up after errors is messy if one isn’t inside a pcall

or a cpcall
• lua_cpcall is awkward to use
• lua_cpcall is expensive: it allocates a new function every time
• Catching exceptions without cleaning up the state is bad

• Solution: Catch the exception but recognize that the state wasn’t
properly cleaned up and let the garbage collector deal with it
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Lack of Static Type-Checking
• Programmers make typos
• Catching everything at runtime requires exhaustive testing and

some bugs can be subtle
• Unit tests help but don’t work as well for UI code

• Wrong name v wrong type

• Added checks at the global environment via __index and
__newindex metamethods

• Added lint tool that checks the files
• Class constructor looks for an optional __fields entry and if so

adds __index and __newindex metamethods to check keys
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Performance Measurement

• Lots of stack crawls just include a section
doing something in the Lua VM

• Partial Solution: Put in wrappers to
measure time and generate profiling
information where we suspected issues
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Key Lua Strengths

• Coroutines
• Coroutines and closures are more valuable than

objects
• Robust tables
• Metamethods make bridging easy (mostly)
• Data-description is natural
• Simplicity
• Vibrant community
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