
2005 Adobe Systems Incorporated. All Rights Reserved.

It’s All Glue

Mark Hamburg

Building a desktop
application with Lua

Adobe Fellow
27 July 2005

2005 Adobe Systems Incorporated. All Rights Reserved. 2

Starting Out

• Looking at new interaction models
• Particularly interested in what we could learn from

games

• Long-standing interest in extensible systems
• Very interested in Oberon about 11 years ago
• AutoCAD and AutoLISP seemed like an interesting

model of what deep-scripting could do for one

• Learned about Lua via the GC mailing list

2005 Adobe Systems Incorporated. All Rights Reserved. 3

Evolution

• Shifting from a C++ bias to a C (Objective-C) bias
• C++ has grown frighteningly complex
• Difficult to build an extensibility story around C++

• Could we make Lua a peer to the C code?
• Already had Objective-C based plug-ins
• Implemented Lua support for the plug-in loader

• Implemented parallel namespace support for C-
based APIs and Lua-based APIs

2005 Adobe Systems Incorporated. All Rights Reserved. 4

Evolution continued
• More pieces start getting implemented in Lua

• How far can we take this?
• To what extent do we need to maintain support for a pure C

path?
• Standard platform conventions such as plists give way to

Lua-based manifests
• Gradual absorbtion of “the Lua way”

• C code should be minimal and exists to handle performance
critical inner loops and interfacing to the OS

• As much of the interesting logic as possible goes into Lua
• Build “pretty” APIs using Lua
• Whenever possible test while coding

2005 Adobe Systems Incorporated. All Rights Reserved. 5

Project Breakdown

• About 40% Lua
• 100,000 lines of Lua
• 150,000 lines of C, C++, Objective-C, etc.
• Excludes “third-party” libraries including those

from within Adobe

2005 Adobe Systems Incorporated. All Rights Reserved. 6

But LOC is deceptive…

• Lua code includes some significant subsystems
• Namespace management
• Observations & Notifications
• View layout
• Database abstraction
• Most of the task system logic

• Virtually all of the actual UI logic

2005 Adobe Systems Incorporated. All Rights Reserved. 7

Achievements

• Flexible event handling
• Flexible data handling
• Low project bug count
• Very low crash count
• QA engineer generating production code

2005 Adobe Systems Incorporated. All Rights Reserved. 8

Mechanisms

• Objective-C bridging
• Multiple universes

2005 Adobe Systems Incorporated. All Rights Reserved. 9

Objective-C Bridging
• Lots of bridges out there

• CocoaDev
• Steve Dekorte had one though it seems to have moved
• Many are more aggressive than ours

• Enabled by the availability of introspection data in the
Objective-C runtime
• This makes Lua to Objective-C calls easy
• Automatic extensions have to contend with Objective-C’s use

of “:” [dict setValue: value forKey: key]
• Not as easy to implement objects in Lua that are transparently

callable from Objective-C

2005 Adobe Systems Incorporated. All Rights Reserved. 10

Objective-C Bridging (continued)
• Extension on our part to deal with naming and to allow for

greater parameter list flexibility:
• Objective-C: - (int) myMethod_L: lua_State* L { }
• Lua: obj:myMethod(1, 2, 3)

• Added support for property-style access in addition to
method-style access
• myObj.x
• myObj:x()
• Complicated on reads by the fact that at __index time, you

don’t know how the value will be used
• We’ve got a __methods metamethod patch to the LuaVM

• Primary Lesson: Languages with good introspection make it
easy to export APIs to Lua

2005 Adobe Systems Incorporated. All Rights Reserved. 11

Multiple Universes: Prelude

• Started out by trying LuaThreads
• The mutex locks basically kill performance

• 25-50% speed hit in some tests
• Memory synchronization bites you even in the

absence of contention
• LuaThreads is unsafe with respect to some

function in the library such as ref manipulation
• So, we need more locks…

• Looked at doing things to reduce lock traffic
• Those all became scary in their complexity

2005 Adobe Systems Incorporated. All Rights Reserved. 12

Multiple Universes: Solution

• Do processing in separate universes — i.e.,
independently opened Lua states

• Logic driving universes is written in C
• If doing it over again, it would probably be in Lua

• Communicate via a “transit universe” that is
subject to a mutex at the transit universe API level

Main Transit Worker

2005 Adobe Systems Incorporated. All Rights Reserved. 13

Transit Universe
• Supports transfer of primitive Lua types

• Numbers
• Strings
• Booleans
• Light userdata

• Supports transfer of tables
• No logic to deal with DAGs

• Supports transfer of Objective-C objects
• No support for:

• Functions: Use dump & load
• Metatables
• Arbitrary userdata

2005 Adobe Systems Incorporated. All Rights Reserved. 14

Transit Universe
• C-based API
• If it had a Lua-based API, it might look something like:

• transitUniverse.put(value) -- returns a token that can be
transferred between universes via some other mechanism

• transitUniverse.get(token) -- returns the value associated with
a token returned by transitUniverse.put

• transitUniverse.delete(token) -- deletes the value associated
with the token in the transit universe

2005 Adobe Systems Incorporated. All Rights Reserved. 15

Challenges

• Garbage collection performance
• Garbage collection cycles
• Temporary states
• Lack of static type-checking
• Performance measurement

2005 Adobe Systems Incorporated. All Rights Reserved. 16

Garbage Collection Performance
• GC pauses are disturbing when running animations

• Incremental collection smooths those out
• Heap allocation is slower than stack allocation

• Returning a rectangle struct on the stack in C is a lot cheaper than
allocating a rectangle object, returning it, and then collecting it

• For small structures, the solution is to work with them unpacked — i.e.,
pass x and y rather than a point
• myObject:offsetBy(x, y)
• myObject:offsetBy(point)

• Pass in destination storage as an optional parameter
• myObj:bounds(storage) but also myObj:bounds()

• Careful allocation of temporaries at outer scopes

2005 Adobe Systems Incorporated. All Rights Reserved. 17

Garbage Collection Cycles
• C points to Lua points to C points to Lua points to…
• Refs created via Lua have to be manually broken — i.e., they

create the moral equivalent of reference-counting cycles
• Worked with some really ugly hacks based on per-object

metatables
• Lua 5.1w5’s addition of environments for userdata has fixed all

this
• Store links to other Lua objects in the environment and let the Lua GC

trace them
• Be happy that Objective-C allows one to change the behavior on

retain and release calls for existing classes

2005 Adobe Systems Incorporated. All Rights Reserved. 18

Temporary States
• Problem: Lots of C code doesn’t have a Lua state directly available

to it
• Solution: Maintain a pool of states for a universe (allocated via

lua_newthread) so that we can just grab one
• Problem: Cleaning up after errors is messy if one isn’t inside a pcall

or a cpcall
• lua_cpcall is awkward to use
• lua_cpcall is expensive: it allocates a new function every time
• Catching exceptions without cleaning up the state is bad

• Solution: Catch the exception but recognize that the state wasn’t
properly cleaned up and let the garbage collector deal with it

2005 Adobe Systems Incorporated. All Rights Reserved. 19

Lack of Static Type-Checking
• Programmers make typos
• Catching everything at runtime requires exhaustive testing and

some bugs can be subtle
• Unit tests help but don’t work as well for UI code

• Wrong name v wrong type

• Added checks at the global environment via __index and
__newindex metamethods

• Added lint tool that checks the files
• Class constructor looks for an optional __fields entry and if so

adds __index and __newindex metamethods to check keys

2005 Adobe Systems Incorporated. All Rights Reserved. 20

Performance Measurement

• Lots of stack crawls just include a section
doing something in the Lua VM

• Partial Solution: Put in wrappers to
measure time and generate profiling
information where we suspected issues

2005 Adobe Systems Incorporated. All Rights Reserved. 21

Key Lua Strengths

• Coroutines
• Coroutines and closures are more valuable than

objects
• Robust tables
• Metamethods make bridging easy (mostly)
• Data-description is natural
• Simplicity
• Vibrant community

2005 Adobe Systems Incorporated. All Rights Reserved. 22

